Learning an Evolvable Genotype-Phenotype Mapping
View at Publisher
Authors | Matthew Andres Moreno, Wolfgang Banzhaf, Charles Ofria |
Date | July 15th, 2018 |
DOI | 10.1145/3205455.3205597 |
Venue | The Genetic and Evolutionary Computation Conference |
Abstract
We present AutoMap, a pair of methods for automatic generation of evolvable genotype-phenotype mappings. Both use an artificial neural network autoencoder trained on phenotypes harvested from fitness peaks as the basis for a genotype-phenotype mapping. In the first, the decoder segment of a bottlenecked autoencoder serves as the genotype-phenotype mapping. In the second, a denoising autoencoder serves as the genotype-phenotype mapping. Automatic generation of evolvable genotype-phenotype mappings are demonstrated on the n-legged table problem, a toy problem that defines a simple rugged fitness landscape, and the Scrabble string problem, a more complicated problem that serves as a rough model for linear genetic programming. For both problems, the automatically generated genotype-phenotype mappings are found to enhance evolvability.
BibTeX
@inproceedings{moreno2018learning,
author = {Moreno, Matthew Andres and Banzhaf, Wolfgang and Ofria, Charles},
title = {Learning an Evolvable Genotype-Phenotype Mapping},
year = {2018},
isbn = {9781450356183},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3205455.3205597},
doi = {10.1145/3205455.3205597},
booktitle = {Proceedings of the Genetic and Evolutionary Computation Conference},
pages = {983–990},
numpages = {8},
keywords = {deep learning, indirect encodings, evolvability, genetic algorithms, adaptive representations, genotype-phenotype map},
location = {Kyoto, Japan},
series = {GECCO '18}
}
Citation
Matthew Andres Moreno, Wolfgang Banzhaf, and Charles Ofria. 2018. Learning an evolvable genotype-phenotype mapping. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ‘18). Association for Computing Machinery, New York, NY, USA, 983–990. https://doi.org/10.1145/3205455.3205597