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1 Introduction1

The metaphor of biological evolution so deeply pervades2
evolutionary computation (EC) that difficulty can arise in3
discerning the threshold where bio-inspiration ends and algorithm4
engineering begins. Although some work delves well outside5
the biological metaphor (Hansen & Ostermeier, 2001; Munteanu6
& Lazarescu, 1999; Miller & Turner, 2015), core aspects of7
EC prevail within a bio-inspired framing — whether originally8
conceived as such, or subsequently co-opted to an analog in nature.9
Table 1 highlights prominent examples of this phenomenon.10

Indeed, given the prevalence of bio-inspiration within evolution-11
ary computing (EC), the merit of bio-inspiration has constituted12
a longstanding point of discussion. In addition to imparting useful13
new ideas, some highlight value from biological metaphors simply14
as a source for convenient, intuitive, self-consistent vocabulary15
(Sörensen, 2015; Banzhaf et al., 2006a). Another draw of16
bio-inspiration is the charisma it lends evolutionary computation17
(Lehman et al., 2020). The complexity and emergent intelligence18
found throughout the natural world provides a stunning display of19
evolution’s profound creative power, and the prospect of capturing20
any fraction of that power and creativity is fascinating. Indeed, the21
demonstrated viability of natural precedent lends bio-inspiration22
credence as a blueprint for ambitious research agendas in23
computing (Miikkulainen & Forrest, 2021; Banzhaf et al., 2006b).24

Some have questioned, however, whether charisma of the25
evolutionary approach might also be serving as a preoccupying26
distraction (Moore, 2023; Sörensen, 2015). In particular, given27
the broader tendency for machine learning researchers to adhere28
to their preferred models (Domingos, 2012), there is risk that29
evolutionary approaches have become something of a pursuit for30
its own sake, rather than a means to an end (Woodward et al.,31
2016; Yampolskiy, 2018).32

Moreover, to a skeptical reader, pervasive appeals to bio-33
inspiration can come across as window dressing on recycled ideas34
or as an instance of the naturalistic fallacy (Wortmann & Fischer,35
2020; Sörensen, 2015). Such perceptions contribute to a more36
fundamental concern that evolutionary computation lacks a cohe-37
sive, rigorous theoretical framework with first-principles grounding38
(Worzel & Riolo, 2003). (Concerns in this vein, in part, also persist39
from more general and longstanding contention between “scruffy”40
and “neat” philosophies (Jones, 2008; Minsky, 1991, p. 16).) The41
ad hoc nature of evolutionary computation has also been impli-42

cated in hindering adoption, on account of numerous configurable43
and tunable elements confronting new users (O’Neill et al., 2010).44

One possible response to these concerns is to favor de-45
emphasizing the evolutionary metaphor, with the goal of deepening46
and diversifying first principles footing of evolutionary computa-47
tion (Moore, 2023). While we agree that evolutionary computation48
needs sounder theory, we propose the opposite — that this chal-49
lenge can best be addressed by leaning deeper into the evolutionary50
metaphor. Historically, evolutionary computation researchers have51
primarily drawn on bio-inspiration to improve the performance52
of runtime algorithms (Banzhaf et al., 2006a; Kumar & Bentley,53
2003; McPhee et al., 2009). This approach has been effective, but54
we argue that it can be taken a step further by looking to the science55
arising around biological systems, rather than just the biological56
systems themselves, for inspiration — to gain methods and theory57
that characterize and explain EC algorithms, not just improve their58
performance. Because evolutionary computation operates on the59
same principles as biological evolution, substantial amounts of lit-60
erature on biological theory can be brought to bear on evolution in61
silico (Belew et al., 1996). As we will review, substantial progress62
has already been made in this vein — however, much untapped63
value remains to be “arbitraged” from biological literature. Subse-64
quently, we will evaluate additional yet-to-be-explored opportuni-65
ties that might further springboard understanding of evolutionary66
algorithms off of work in evolutionary biology. Discussion, in par-67
ticular, highlights connections between understanding gained from68
arbitrage of theory and analysis and — of ultimate importance —69
application-oriented objectives of evolutionary computation.70

At the most basic level, evolutionary biology and allied fields71
of population genetics, developmental biology, and ecology72
complement the focus of evolutionary computation in seeking73
to explain, rather than optimize (though not always (Cobb et al.,74
2013; Carroll et al., 2014)). These life sciences fields have seen75
radical advances in recent years due to technological leaps in data76
acquisition and analysis capability (Mathé et al., 2018; Deshpande77
et al., 2024). Also notable is increasing traction gained by the78
subfield of experimental evolution within evolutionary biology.79
Experimental evolution approaches, which observe evolution80
under controlled conditions, allow detailed inquiry leveraging81
detailed data collection, replay capabilities, and systematic82
experimental manipulations (Kawecki et al., 2012).83

One concern in transposing knowledge from biology to84

https://orcid.org/0000-0003-4726-4479
https://orcid.org/0000-0001-8616-4898
https://orcid.org/0000-0001-6838-7385


DRAFT

Table 1: Conceptual analogies between evolutionary computation (EC) mechanisms and biological processes.

EC Mechanism Biological Analogy References

Diversity maintenance Negative frequency–dependent
selection (ecology)

(Dolson & Ofria, 2018; Dolson et al., 2018)

Reciprocal selection Co-evolution (Lehman & Stanley, 2010; Harper, 2012; Garbus
et al., 2024; Koza et al., 1991; Kala, 2012; Wang
et al., 2019; Miikkulainen et al., 2024)

Inexact referencing (e.g. tags) Active-site recognition in
biomolecular interactions

(Spector et al., 2011; Moreno et al., 2023b; Lalejini
& Ofria, 2018; Downing, 2015)

Search-space transforms Genotype–phenotype maps (Lehman et al., 2023; Moreno et al., 2018; Bentley
et al., 2022; Gaier et al., 2020; Wittenberg et al.,
2023) TODO

evolutionary computation is the extent to which specificity of85
theory and methods to biological life might make them poorly86
applicable to evolutionary computation. While this is a valid87
concern, owing to existing needs in biology to stretch abstractions88
across vast and diverse domains of biological life, we have found89
there to be a good amount of work that is useful to evolutionary90
computation. Indeed, computational artificial life approaches, a91
close cousin of evolutionary computation, are a popular technique92
for exploring the generalizability of biological concepts beyond93
life-as-we-know-it (Cleland, 2013; Langton, 1989; Pennock, 2007).94
Insofar as content applicable to evolutionary computation exists95
within biological literature, however, applying that knowledge96
requires sufficient domain knowledge (1) to identify it and (2)97
to navigate subtleties in aligning appropriate correspondences98
with EC. Given the vastness, context-dependence, and — at times99
— polyonymy of biological theory, interdisciplinary collaborations100
can be highly productive (Banzhaf et al., 2020).101

With investment of effort, engaging theory from evolutionary102
biology can yield substantial value. Indeed, a good amount of103
existing research has already taken such an approach (Table 2).104
Our review highlights examples across three themes,105
• genotype-phenotype maps and fitness landscapes (Section 2);106
• ecology assembly and coexistence theory (Section 3); and107
• phylogeny for prediction/analysis (Section 4).108
We also review practical work geared at overlapping evolutionary109
computation with bioinformatics infrastructure,110
• sampling-based approaches, which are friendly for decentralized111

infrastructure (Section 5); and112
• interoperation with bioinformatics infrastructure (Section 6).113
Additional opportunities for theory arbitrage remain entirely114
unexplored, however — which we also outline (Section 7).115

Despite its promise, borrowing from biology should not be116
taken as a silver bullet, as it is subject to fundamental limitations.117
Namely, substantial blind spots remain in the explanatory and118
predictive power of analyses and theory in ecology and evolution119
(Houlahan et al., 2016; Catford et al., 2022; Yates et al., 2018)120
— although this is best considered as the exception, rather than121
the rule (Lynch, 2025). Not unlike evolutionary computation,122

deficiency in theory has habituated perennial consternation in123
evolutionary biology (Welch, 2017). Among other factors, blame124
includes overabundance of identifiable causal factors and the125
existence of exceptions or complicating factors to nearly every126
generalization. Failures to recognize and build on existing work127
have also been broadly highlighted (Lynch, 2025; Beer, 2024).128

These limitations notwithstanding, biological equivalencies129
seem likely for the preponderance of what explanatory power is130
possible within EC. So long as evolutionary algorithms comprise131
populations of discrete individuals with heritable traits, they will,132
in some literal sense, instantiate evolutionary processes (Pennock,133
2007). Therefore, any systematic theory generalizable across134
evolutionary computation would likely also hold substantial135
explanatory power for aspects of biology and vice versa.136
Notable exceptions, though, arise in unique capabilities within137
digital evolution to entirely strip out mechanistic elements (e.g.,138
environmental heterogeneity, indirect genotype-phenotype map,139
etc.) and to achieve perfect, direct observability. As such, theory140
established in-house for EC could plausibly lead biology in certain141
areas, a point we return to in our concluding remarks. Although142
EC will doubtlessly continue in contributing new ideas and143
perspectives on evolution, reciprocal exchange should be expected144
— as it seems unlikely for EC, as a smaller field, to profoundly145
outpace biologists in achieving truly general or cohesive theory.146

With expanded perspective, the evolution metaphor in EC has147
value to offer not only in devising new approaches but also in148
understanding how and why they work. Looking past biology to149
harness the science that has arisen around it should continue to be150
prioritized in advancing the rigor and transparency of evolutionary151
computation. By highlighting notable existing steps in this152
direction, we hope to catalyze continued progress toward these153
goals. Calling attention to several yet-untapped correspondences154
with theory in ecology and evolutionary biology, we hope, also155
contributes towards this end.156

2 Fitness157
Landscapes and Genotype-Phenotype Maps158

key citations (TODO):159
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Table 2: Representative examples of evolutionary computation work that leverages theory from biology.

Theme Topic Reference

Genotype-Phenotype
Maps

Quantifying Deception: A Case Study in the
Evolution of Antimicrobial Resistance

(Eppstein & Ogbunugafor, 2016)

TBD TBD

Ecology
Reachability Analysis for Lexicase Selection
via Community Assembly Graphs

(Dolson & Lalejini, 2024)

Ecological theory provides insights about
evolutionary computation

(Dolson & Ofria, 2018)

Phylogeny Analysis

What can phylogenetic metrics tell us about
useful diversity in evolutionary algorithms?

(Hernandez et al., 2022)

Untangling phylogenetic diversity’s role in
evolutionary computation using a suite of
diagnostic fitness landscapes

(Shahbandegan et al., 2022)

Interactions between learning and evolution (Ackley & Littman, 1991)

Sampling and Tracking
Partial Observability

Methods for Rich Phylogenetic Inference
Over Distributed Sexual Populations

(Moreno, 2024)

A Guide to Tracking Phylogenies in Parallel
and Distributed Agent-based Evolution
Models

(Moreno et al., 2024c)

Interoperation
with Bioinformatics
Infrastructure

Data Standards for Artificial Life Software (Lalejini et al., 2019)

alifedata-phyloinformatics-convert (Moreno & Papa, 2024)

• Quantifying Deception: A Case Study in the Evolution of160
Antimicrobial Resistance (Eppstein & Ogbunugafor, 2016)161

• The arrival of the frequent: how bias in genotype-phenotype162
maps can steer populations to local optima (Schaper & Louis,163
2014)164

• Evolution in the light of fitness landscape theory (Fragata et al.,165
2019)166

• Genome growth and the evolution of the genotype-phenotype167
map (Altenberg, 1995)168

TODO lead-in goes here169

2.1 Example Subsection170

3 Ecology171

key references172

• Reachability Analysis for Lexicase Selection via Community173
Assembly Graphs (Dolson & Lalejini, 2024)174

• Ecological theory provides insights about evolutionary175
computation (Dolson & Ofria, 2018)176

•177

TODO lead-in goes here178

3.1 Ecology Assembly Theory179

3.2 Ecology Coexistence Theory180

4 Phylogeny Analysis181

key references:182
• Ecology, Spatial Structure, and Selection Pressure Induce Strong183

Signatures in Phylogenetic Structure (Moreno et al., 2024d)184
• What can phylogenetic metrics tell us about useful diversity185

in evolutionary algorithms? (Hernandez et al., 2022)186
• Untangling phylogenetic diversity’s role in evolutionary187

computation using a suite of diagnostic fitness landscapes188
(Shahbandegan et al., 2022)189

• looking at genetic change for signatures of adaptation (although190
these are more alife-y)191
– Interactions between learning and evolution (Ackley &192

Littman, 1991)193
– MODES (Dolson et al., 2019)194

TODO lead-in goes here195

4.1 Example Subsection196

5 Sampling and Tracking Partial Observability197

Key references:198
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• hereditary stratigraphy (Moreno et al., 2022a, 2024c)199
• sampling-based knockout analyses (Moreno, 2024)200

TODO mention that best-effort approaches are of interest201
in scaling digital evolution systems themselves (e.g., ackely,202
darkcycle, etc.)203

(Moreno et al., 2022b, 2024c)204
It has repeatedly been the case that significant steps forward in205

biological knowledge piggyback on innovations making new types206
or quantities of data available, technological or otherwise. For207
instance, evolutionary theory arose in the context of burgeoning208
taxonomic collections (Winsor, 2009), core ideas in pathology209
and developmental biology arose from microscopy (Turner, 1890),210
high-throughput sequencing has made symbiosis a key concept211
in organismal biology (e.g., gut microbiome) (Durack & Lynch,212
2019), and new imaging technologies are driving new questions213
about ecological interactions across continental-scale distance214
(Stark et al., 2016). Although factors besides feasibility have also215
catalyzed significant advances in life science (e.g., Mendel, Redi,216
Semmelweis), growth in capabilities to generate and collect data217
play a longstanding and ongoing role in enabling new biological218
inquiry (Strasser, 2012). Contemporary biology enjoys profound,219
ongoing gains in data availability (Sulston et al., 1983; Sheth et al.,220
2017; Weeks et al., 2023), nevertheless fundamental limitations221
exist in data completeness, particularly with respect to historical ac-222
counts of natural history (Benton et al., 2011; Delsuc et al., 2005).223

In contrast to biology, digital evolution has, from the outset,224
enjoyed perfect fidelity and absolute completeness in data collec-225
tion. Indeed, such observability is a key driver of scientific interest226
in using in silico models for evolution research (O’Neill, 2003).227

Although some domains of genetic programming have been228
highlighted for their capability to produce intuitive symbolic229
expressions (Hu, 2023; Javed et al., 2022), it is also the case that230
discerning the functionality of some evolved artifacts can require231
extensive experiment-driven analyses. Such knockout trials —232
in contrast to other aspects of digital evolution — are notable in233
that combinatoric tractability has held back completely exhaustive234
analysis for all but the smallest genomes (Nitash & Adami, 2021).235
Knockout assay experiments have, therefore, typically limited236
to single-site (Adami, 2006), all-pairs (Kumawat et al., 2023), or237
iterative approaches (Langdon et al., 2014; Moreno et al., 2021).238

Massively parallel and distributed processing power, which239
has been argued crucial to future directions in digital evolution240
(Moreno & Ofria, 2022; Taylor et al., 2016), peels away the241
tractability of digital evolution’s existing perfect observability242
paradigm. One concern is that many-process experiments can243
produce greater volumes of data than is feasible to store, much244
less analyze (Klasky et al., 2021). For instance, even under serial245
processing, maintaining full records of genetic program instruction246
history under sexual recombination has proven to be a highly247
technically demanding, data-intensive task (McPhee et al., 2016).248
Parallel and distributed computing also introduces challenges249
in runtime overhead from communication and synchronization250
required for data collection and introduces the possibility of data251
loss when components fail (Snir et al., 2014). Continuing with the252
phylogenetic example, typical tracking approaches are sensitive253
to even small amounts of data loss and, in a distributed computing254
context, require runtime inter-process communication to reclaim255

memory from extinct lineages (Moreno et al., 2024a).256
Fortunately for digital evolution, research in biology, by257

necessity, already routinely works around issues of incomplete and258
imperfect data. As such, existing methods can provide a valuable259
foothold in scenarios where combinatorial effects or runtime260
multiprocessing make exhaustive direct observation impractical.261
This section reviews work leveraging methods borrowed from262
biology to negotiate data limitations on both fronts: 1) application263
of mark-recapture approaches from ecology to characterize fitness264
landscapes and 2) application of reconstruction-based approaches265
inspired by bioinformatics for robust, decentralized phylogeny266
tracing.267

5.1 Mark-Recapture Estimation268

Mark-recapture analysis (or capture-recapture analysis) is a269
widely-used and well-developed method to estimate sizes of270
biological populations (Amstrup et al., 2010). This method271
uses the proportion of individuals shared between two or more272
samples as a proxy to estimate the total population size that273
is being sampled. For large population sizes, relatively lower274
recapture rates are expected. It turns out, though, that idealized275
sampling from an urn poorly describes animal behavior. Various276
potential biases have been identified — ranging from the inherent277
disposition of certain animals to be more “trap happy” or “trap278
shy” to the tendency of already-captured animals to become279
more wary of traps — and sophisticated statistical methods have280
been devised to make estimation robust to them. Mark-recapture281
literature, therefore, provides a rich, ready-made buffet for tacking282
estimation problems involving repeat partial sampling.283

In one application, Moreno (2024) demonstrate use of a mark-284
recapture estimator in quantifying sites contributing to fitness that285
are not individually detectable due to epistatic redundancy and or286
small-effect contributions. Analogy to the mark-recapture scenario287
is established by equating sites with any potential for fitness effect288
— whether or not detectable through single-site knockout — to289
the population to be estimated. Iterative knockouts are applied to290
produce several “skeleton” genotypes, where no more sites can be291
removed without reducing fitness. Sites in each skeleton, therefore,292
each have a demonstrable fitness effect — but, if redundancy or293
small effects are at play, no skeleton contains all such sites. Each294
skeleton, therefore, represents a sample of sites with potential295
fitness effects. Crucially, though, these samples will overrepresent296
lower-redundancy or larger-effect sites. Application of a jackknife297
estimator due to Burnham & Overton (1979), however, ensures esti-298
mation accuracy remains intact. In a separate line of work, Schulte299
et al. (2014) have noted potential for mark-recapture methods to300
play a role in characterizing the extent of neutral space within301
multistep mutational neighborhoods of computer programs.302

5.2 Reconstruction-based Phylogenetic Analysis303

In addition to play-by-play accounts of extinctions, innovations,304
and other key events in an evolutionary run, phylogenetic analysis305
can provide insight into the nuts and bolts of evolutionary306
computation through more general characterization of the307
underlying mode and tempo of evolution (Moreno et al., 2023a;308
Hernandez et al., 2022; Shahbandegan et al., 2022; ?). Availability309
of an exactly accurate phylogenetic record is useful, but in most310



DRAFT

cases not strictly necessary, in accomplishing these objectives311
(Moreno et al., 2024d). Indeed, typical biological approaches to312
phylogenetic analysis involve inexact inference-based estimation,313
yet such phylogenetic analysis has contributed immensely to our314
understanding of biological evolution.315

At the most fundamental level, modern bioinformatics accom-316
plishes phylogenetic analysis by comparing traces of similarity317
retained in DNA genomes under the influence of mutational318
accumulation. Notably, such mutational processes occur in a com-319
pletely decentralized manner, and reconstruction can be performed320
among any number of organisms — including small subsamples of321
the overall population. Disadvantageously, though, complications322
arise in these analyses owing to issues of back mutation, mutational323
saturation, selection effects, long branch attraction, and the vast324
quantities of genetic sequence information required (?) In contrast325
to biological model organisms, however, evolutionary computation326
affords the capability to arbitrarily engineer genome structure —327
and, therefore, affords the possibility to sidestep such challenges.328

Hereditary stratigraphy methodology arose from such a desire329
for a means to extract phylogenetic information from distributed330
simulations that is efficient, robust, straightforward, and gener-331
alizable across digital evolution systems. The method works by332
bundling agent genomes with special annotations in a manner akin333
to non-coding DNA (entirely neutral with respect to agent traits334
and fitness). These annotations apply an approximate checkpoint-335
ing mechanism to maximize reconstruction quality from a minimal336
memory footprint — configurable as low as 96 bits per genome337
(Moreno et al., 2022a). A major benefit of this approach is that it al-338
lows the relatedness of any two organisms to be compared directly339
without depending on global information, which opens the door340
to incorporation of EC techniques that incorporate phylogenetic341
information at runtime to guide evolution toward desired outcomes342
(Lalejini et al., 2024a,b; Murphy & Ryan, 2008; Burke et al., 2003).343

In one application, borrowing from bioinformatics has allowed344
hereditary stratigraphy-enabled implementation to address chal-345
lenges of scale, memory capacity, and communication bandwidth346
in opening a window into digital evolution on next-generation AI347
accelerator hardware. Moreno et al. (2024e) demonstrates tracking348
of an island-model genetic algorithm across the 850,000 core349
Cerebras Wafer-Scale Engine. Under a simple one-max equivalent350
test regime, the strong decentralization afforded by hereditary351
stratigraphy enables upwards of a quadrillion replication events to352
be simulated in an hour. Moreno et al. (2024e) showed effects in353
phylogenetic structure between alternate mutation operators, and354
other work has demonstrated recovery of information salient to355
understanding selection pressure, spatial structure, and ecological356
dynamics (Moreno et al., 2024d).357

For those looking to incorporate this methodology into358
their own work, a public-facing software library (“hstrat”) has359
been provided to facilitate plug-and-play addition of tracking360
annotations (Moreno et al., 2022b). Moreno et al. (2024c)361
provides a step-by-step guide to configuring and using the362
methodology. Although the core methodology ascribes an asexual363
model, extensions to sexual phylogenies have been explored364
(Moreno, 2024). Beyond phylogenetic tracking, underlying365
algorithms developed for hereditary stratigraphy provide means366
to very efficiently maintain running temporal cross-samples (“data367

stream curation”) (Moreno et al., 2024f), which holds potential368
for more general utility in reducing runtime communication and369
storage by support for on-demand, after-the-fact data extraction.370

5.3 Inferential371
Observability (excerpt from EXPRESS grant)372

To address these problems, we propose a paradigm shift in373
ABMS/PDES data collection: inferential observability. This model374
takes inspiration from approaches used in real-world experiments,375
which successfully draw scientific inferences based on a smaller376
and noisier sets of data than what are typically collected using377
ABMS/PDES. Indeed, past a certain point, precision in data from378
ABMS/PDES becomes of essentially negligible value, owing to379
arbitrary effects of stochasticity and fundamental limitations in380
correspondence between model and reality. Any computational381
resources invested in producing this excessive level of precision382
could be better used elsewhere. Trading a controlled amount of383
data precision for increased scalability and hardware accelerator384
compatibility would be highly worthwhile.385

Historically, most research using ABMS/PDES has assumed386
complete observability of model state. Indeed, the ability to387
measure properties in silico that would be impossible to observe388
in vitro or in vivo is a major benefit of ABMS/PDES for scientific389
inquiry. However, as the scale of these models increases, the cost390
of data collection becomes a serious obstacle. Thus, experiments391
exist that are intractable in the real world because they rely on data392
that are physically impossible to measure, but are also intractable393
in digital models because storing the necessary data to answer394
the questions at hand is infeasible. We propose that, through395
careful algorithm development, we can solve this problem by396
recording a smaller amount of data that enables us to draw the397
desired scientific inferences at a fraction of the computational cost.398
Through this work, we will unlock the ability to perform scientific399
inquiry that would have been previously intractable across digital400
and real-world systems.401

Data tracking often requires cross-referencing multiple402
simulation elements, which can introduce runtime communication403
costs under parallel and distributed computation. For example,404
in evolutionary models, phylogenetic relatedness (i.e., line of405
descent) information enables powerful analyses, but perfectly406
tracking this data necessitates difficult-to-scale bookkeeping to407
purge extinct lineages (Moreno et al., 2024b) (we solved this408
problem using a combination of inferential observability and409
space-time memory; see HStrat in Prior Research). Qualitatively410
similar problems occur more broadly in contexts where patterns411
of interaction among simulation elements must be tracked (e.g.,412
tracking chains of pathogen transmission). Beyond slowdown413
from synchronization inefficiencies, a fundamental obstacle is414
also posed when data storage needs exceed available space.415

Inferential observability aims to collect the minimal amount416
of data necessary to answer the scientific questions at hand. In417
part, we propose to achieve this goal by designing algorithms that418
efficiently down-sample time series data. More fundamentally,419
however, we suggest that modelers may be better served by export-420
ing data only under certain circumstances and propose algorithms421
to support this workflow. Such an approach is particularly valuable422
for work with hardware accelerators such as the WSE, which have423
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limited input/output (I/O) bandwidth. We anticipate that users may424
want to export data in response to certain “trigger” conditions being425
fulfilled, through sampling processes, or — for policy-driven mod-426
els — in response to real-time queries during scenario exercises.427

Simulation is useful insofar as it is interpretable. As simulation428
scales, so does the challenge of managing an exhaustive data429
record. Recent hardware trends only exacerbate matters, growing430
processing power while reducing the amount of RAM and disk431
storage available per core — especially in accelerator-driven432
HPC architectures (Khan et al., 2021; Gholami et al., 2024). For433
such architectures, host-device bandwidth and latency strongly434
impact performance (Kwon & Rhu, 2018). Such concerns arise435
especially in work with the Cerebras WSE where only a small436
fraction of peripherally-located PEs interface to the host. Our437
proposed inferential observability paradigm will help mitigate438
these problems. In this aim, we propose to develop, formalize,439
and experimentally evaluate this approach. Additionally, we will440
publish software implementations to make inferential observability441
accessible to the ABMS/PDES community.442

6 Interoperation443
with Bioinformatics Infrastructure444

key references:445
• Niema’s megaphylogeny software (Moshiri, 2025, 2020) and446

taxonium (Sanderson, 2022)447
• alife data standards (Lalejini et al., 2019)448
• alifedata phyloinformatics convert (Moreno & Papa, 2024)449
• hstrat auxlib? (Moreno et al., 2022b)450
• AEVOL (Daudey et al., 2024) and applications of agent-based451

modeling to evaluating bioinformatics?452

6.1 ALIFE Data Standard453

7 Opportunities for Future Arbitrage454

future work:455
• trait-based phylogenetic analysis456
• spatial analyses (necessary due to parallel and distributed457

computing)458
• detecting speciation through population genetics methods459

(Sukumaran et al., 2021)460
• Inferring Fitness landscapes and selection on phenotypic states461

from single-cell genealogical data (Nozoe et al., 2017)462
Table 3 lists selected directions from evolutionary biology that463

could enrich EC theory.464
TODO lead-in goes here465

7.1 Excerpt466
from mmore500/hstrat-reconstruction-algo467

In a parallel vein, the volume of data processed in bioinformatics468
workflows is also increasing with continuing advances in high-469
throughput sequencing technologies, enabling the construction470
of phylogenies containing millions of taxa. As an illustrative471
example at the cutting edge of extreme scale, Konno et al. (2022)472
reports phylogeny synthesis from 235 million sequence reads473
generated from an in silico CRISPR barcoding model — requiring474
31 hours of compute time across 300 HPC nodes.475

In both the context of bioinformatics and artificial life research,476
very large-scale phylogeny data enabled by advances in sequencing477
and computing technology represent a new challenge as much as an478
opportunity, raising the question of how best to mine this data. On479
a practical level, work is needed not just to push the boundaries of480
what can be learned from phylogenies, but also how to store, load,481
traverse, quantify, visualize, and manipulate very large phylogenies482
in an efficient manner. Indeed, projects are being developed to try483
to address this issue. For example, taxonium (Sanderson, 2022) is a484
web-based software for visualizing large phylogenies in a flexible,485
interactive manner, and is able to handle browsing millions of486
tips at a high frame rate. Other projects aim to create methods487
for compact, scalable phylogeny representations (Moshiri, 2025,488
2020), enabling faster and more memory-efficient tree operations.489

In pushing the boundaries of phylogenetic scale to billion-tip490
datasets, ALife research has the opportunity to contribute to an491
interdisciplinary ecosystem of software tools developing around492
working with very large-scale phylogenies. In particular, the ALife493
data standard, which specifies a tabular representation for phy-494
logeny data (Lalejini et al., 2019), has strong potential to develop495
a backbone of a larger high-performance phylogeny processing496
infrastructure. Although originally envisioned as a data storage497
format, the tabular nature of the standard allows integrations with498
high-performance software tools arisen around the “Data Frame”499
concept, including Pandas, Polars, Dask, and data.table. These500
libraries provide a structured, user-friendly interface to advanced501
performance features such as multithreading, data streaming, query502
optimization, file partitioning, and column-oriented binary datafile503
formats (McKinney, 2010; Barrett et al., 2025; Vink et al., 2024;504
Rocklin, 2015). Additionally, for Python users, the columnar array505
format typical in data frame libraries is compatible with NumPy506
and Numba, readily enabling on-the-fly SIMD vectorization and507
Just-In-Time compilation (Harris et al., 2020; Lam et al., 2015). In-508
deed, this approach underlies much of the pre- and post-processing509
steps for end-to-end reconstruction demonstrated in this work.510

8 Conclusion511

The sophistication of natural organisms — still, in many cases,512
thoroughly unrivaled by artificial engineering — strongly evi-513
dences the creative potential of evolutionary computation, and also514
lends it unique charisma. The evolutionary metaphor in genetic515
algorithms and genetic programming has proven highly productive,516
both in guiding research advances and also, more simply, in517
capturing research attention. Despite reasonable criticisms of518
metaphor-driven algorithm development (Moore, 2023; Sörensen,519
2015), we argue compelling potential exists to strengthen the520
foundations of evolutionary computation by instead leaning521
further into the evolution metaphor — by engaging methods and522
theory constructs from evolutionary biology and allied fields.523

In this review, we have highlighted notable examples where524
reaching into the biological literature has improved visibility into525
application-oriented evolutionary computation. Such research,526
much of it very recent, reflects only first steps. Important527
extensions remain to be fleshed out and connected to bona fide528
real-world use cases. Further, reviewed work touches only a small529
fraction of promising directions for arbitrage from biology to530
evolutionary computation. In Section 7, we have highlighted531

https://github.com/mmore500/hstrat-reconstruction-algo/
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Table 3: Selected evolutionary biology literature that may inform future theory arbitrage in evolutionary computation.

Theme Topic Reference

Genotype-Phenotype
Maps

Evolution in the light of fitness landscape
theory

(Fragata et al., 2019)

The arrival of the frequent: how bias
in genotype-phenotype maps can steer
populations to local optima

(Schaper & Louis, 2014)

Ecology
assembly theory TBD

coexistence theory TBD

Phylogeny Analysis TBD TBD

Sampling-based
Estimation
and Partial Observability

TBD TBD

TBD TBD

Interoperation
with Bioinformatics
Infrastructure

Tools for exploring massive phylogenies (Sanderson, 2022; Moshiri, 2025, 2020)

TBD TBD

several possibilities.532

Productive exchange between biology and evolutionary com-533
putation is a two-way street. Already, digital organisms find use534
cases in experiments conducted in conjunction with in vivo inquiry535
(Sanjuán et al., 2007; Wilke et al., 2001; Hindré et al., 2012). How-536
ever, we believe that application-oriented genetic programming537
and genetic algorithms have special value to offer in the realm of538
genotype-phenotype maps and evolvability. Owing to its artificial539
nature, genotype-phenotype maps — much less, maps with strong540
evolvability — do not come baked into evolutionary computation541
a priori (Kirschner & Gerhart, 1998). As such, EC research has542
invested significant effort in teasing apart how the properties of a543
genotype-phenotype map influence outcomes from adaptive evolu-544
tion (Banzhaf, 1994; Hu & Banzhaf, 2010; Whigham et al., 2017).545
A particularly promising line of EC work has sprung up in inves-546
tigating how to harness unsupervised learning (e.g., autoencoders,547
LLMs) to generate evolvable genotype-phenotype maps (Lehman548
et al., 2023; Moreno et al., 2018; Bentley et al., 2022; Gaier et al.,549
2020; Wittenberg et al., 2023). Corresponding work in biology,550
however, is only fledgling. Indeed, such work considering evolv-551
ability as an unsupervised learning process has notably already552
been driven forward through collaboration with evolutionary com-553
putation practitioners (Kouvaris et al., 2017; Szilágyi et al., 2020).554

The longstanding bidirectional exchange between evolutionary555
computation and evolutionary biology is truly remarkable, particu-556
larly in contrast with other areas of AI/ML where such efforts have557
been sparser and more recent (Marblestone et al., 2016; Richards558
et al., 2019). We look forward to seeing this exchange deepen and,559
in particular, fulfill concrete objectives in better explaining evo-560
lutionary computation, diagnosing failure cases, and prescribing561
appropriate methods for challenging domain problems.562
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