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Introduction



Motivation

Figure 1: Ant
traffic
[Alexander Wild, a]

Figure 2:
Human traffic
[Patrick T. Fallon, 2015]



Background

Figure 3: Video clip demonstrating route selection by foraging ants


http://www.youtube.com/v/QeSErcTOLbY?rel=0&amp;showinfo=0

Figure 4:
Tetramorium
caespitum
[Alexander Wild, c]

The collective foraging behavior of ants is well studied, including

e the strategies ants use to engage in foraging behavior [Camazine, 2003]
e how ants tend to select the shortest path to food [Camazine, 2003]
e how ants tend to select the richest food source [Camazine, 2003

e approaches to mathematical modeling of ant foraging
[Perna et al., 2012, Ryan, 2016]



Research Question

e How does terrain affect the
foraging path chosen by
ants?

e To travel between nest to food,
do ants tend to select

e the shortest path,

e the quickest path,

e some compromise between
these, or

e some other path all together?

e How might individual ant
behaviors on uneven terrain

contribute to collective decision
making?
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Figure 5: Tetramorium
caespitum [Alexander Wild, b]



Approach



Experimental Design
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Figure 6: Arena terrain scheme



Experimental Design
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Figure 7: Nest and food placement scheme



Modeling Objectives
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Self Propulsion Random Reorientation Containment
Pheromone Deposit Pheromone Evaporation Pheromone Response
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Figure 8: Major modeling considerations



Self Propulsion on Uneven Terrain
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e ants choose walking speed to

Maximum Velocity Obtained by Ant Moving Under Constant Power

expend constant power 3
[Holt and Askew, 2012]

e gravity opposes uphill u
movement, aids downhill i,
movement 10 .
. . . 0.8 p=v?{a = cos()]+ busine)
e severe incline/decline et en o5 .
decreases overall efficiency of oo e s w5 a0

ant movement
Figure 9: Ant velocity under

constant power on inclined terrain



Random Reorientation Events [Khuong et al., 2013]

d )i Onew = boia + T
E v = 000 s — 0
s/ \Ivi
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* ____,"‘ Figure 10: “Boltzmann walker”
*” - cartoon; blue stars denote random
/ reorientation events

e upon reaching a threshold distance (S > Sthresh), the ant experiences
a “reorientation event”
e the threshold distance is generated from an exponential distribution

e the angle the ant turns through is normally distributed



Random Reorientation Events: Adjustments
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Figure 11: lllustration of adjustment accounting
for ant behavior on uneven terrain

e free path of ant (sinresh) increases if ant oriented with or against the
gradient [Khuong et al., 2013]

e ants preferentially re-orient themselves to align with or against a
surface’s topographical gradient [Khuong et al., 2013]

e severity of random reorientation decreased when following
pheromone trail and returning to nest
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Complete System

i
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events:

e out of bounds — reflect heading to “bounce” ant
® 5> Spresh — S =0, Sthresh = X + 3 ‘\T.V\I/\" random reorientation

event with gradient alignment bias

e close to food/nest — switch forager/returner role
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Figure 12: Animation of numerically-approximated solution
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http://www.youtube.com/v/YO6So6tgGVg?rel=0&amp;showinfo=0

Results




Results (preliminary): Path Shape
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Figure 13: Comparison of overall average nest to food foraging path for, left
to right, —7/3, 0, and 7/3 radian inclines.
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Results (preliminary): Path Length
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Figure 14: Comparison of path lengths over incline angles for corner-to-corner
trials
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Results (preliminary): Trip Duration

Figure 15:
trials
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Comparison of trip durations over incline angles for corner-to-corner
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e Refine model
e variable pheromone
deposition rate
e Perform further sensitivity
analyses

e pheromone grid granularity

e pheromone sensitivity radius
of ant

e behavioral weighting

e Compare model predictions
with empirical results

Figure 16: Tetramorium
caespitum [Alexander Wild, d]
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Thank youl!
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