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Background



Evolutionary Algorithm: Example

Figure 1: Evolution in Action [Cheney et al,, 2013]


https://youtu.be/z9ptOeByLA4?t=1m08s

Evolutionary Algorithm: Problem Statement

What makes an evolutionary algorithm
work?



Defining Evolvability

consensus: the amount of viable generated by the
evolutionary process

- evolvability as the amount of generated
- evolvability the proportion of variation that is viable



Evolvability as Novel Variation
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(a) high individual evolvability (b) low individual evolvability

Figure 2: An illustration of individual evolvability, considering evolvability as
heritable variation [Wilder and Stanley, 2015].



Evolvability as Bias towards Viable Variation

Figure 3: Illustration of robustness; high evolvability left and low evolvability
right [Downing, 2015].



Objectives




Environmental Influence on the Phenotype

- in biology, genotype not sole
determinant of phenotype

- P=G+E

- plasticity: phenotypic response to
the environment

- how does environmental influence
on the phenotype affect evolvability?




Motivation: Practical and Scientific

Figure 4: A spacecraft antenna design ] _ _
generated using evolutionary methods Figure 5: A biological frond

[Hornby et al, 2006, Figure 2(a)]. design generated via
evolution.




Genetic Regulatory Network
Model



Model Framework
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Figure 7: The GRN genotype is a set of
Figure 6: Chemical concentrations are if-then rules that acts on a set of
represented as a list of boolean chemical concentrations. The model
values. employed was inspired by

[Wilder and Stanley, 2015].



Model Framework
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(b) genetic regulatory network model

Figure 8: A comparison of the genetic regulatory network model and its
biological inspiration.



Model Implementation

- model implemented through DEAP
(Distributed Evolutionary Algorithms
in Python) framework
[Fortin et al., 2012]

- experiments performed and
analyzed on remote clusters using
Jupyter notebook




Experiment: Direct Plasticity




Direct Plasticity: Biological Intuition

Figure 9: A cartoon illustration of resistance to environmental perturbation.
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Direct Plasticity: Initial State Perturbation

e Ay

EIEEE

(b) control scheme

Figure 10: A comparison of the control and experimental schemes employed
to investigate the relationship between direct plasticity and evolvability.



Mutational Outcome Frequencies

Mutation Type Frequency by Experimental Condition
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Figure 11: Comparison of mutational outcome frequencies for champions
evolved with and without initial state perturbation.



Experiment: Indirect Plasticity




Indirect Plasticity: Biological Intuition

Figure 12: A cartoon illustration of alternate phenotypes expressed based
on environmental signals.
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Indirect Plasticity: Conditional Initial State

(a) experimental scheme (b) control scheme

Figure 13: A comparison of the control and experimental schemes employed
to investigate the relationship between indirect plasticity and evolvability.



Mutational Outcome Frequencies

Mutation Type Frequency by Experimental Condition
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Figure 14: Comparison of mutational outcome frequencies for champions
evolved with only primary condition/objective pair versus with both primary

and secondary condition/objective pairs.
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Experiment: Combined Plasticity




Combined Plasticity: Conditional Initial State with Perturbation

(a) experimental scheme (b) control scheme

Figure 15: A comparison of the control and experimental schemes employed
to investigate the relationship between combined plasticity and evolvability.



Mutational Outcome Frequencies

Mutation Type Frequency by Experimental Condition
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Figure 16: Comparison of mutational outcome frequencies for champions
evolved with only primary condition/objective pair and no initial state
perturbation versus with both primary and secondary condition/objective

pairs and initial state perturbation. 18



Analysis




big idea: internal system configuration
determines the outcomes of change to
the system
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- environmental noise — noise
mitigation structures — more silent
mutations

- alternate phenotypic targets —
developmental path switching
structures — fewer silent mutations

- environmental noise and alternate
phenotypic targets — ..— more
nonlethal, expressed mutations
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Closing Thoughts




Closing Thoughts: Challenges and Reflection

- data management
- save data trial-wise instead of
batch-wise
- export to standard format
- Jupyter notebooks
- write frequently used analysis
functions into package
- compute time

- seek grant funding for more stable
compute environment
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Closing Thoughts: Next Steps

- more directly biologically-inspired
model
- attempt to demonstrate situation

where search with plasticity
outperforms search without
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Questions?
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