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Introduction



Figure 1: Ant
traffic
[Alexander Wild, a]

Figure 2:
Human traffic
[Patrick T. Fallon, 2015]




Figure 3:
Tetramorium
caespitum
[Alexander Wild, c]

The collective foraging behavior of ants is well studied, including

e the strategies ants use to engage in foraging behavior [Camazine, 2003]
e how ants tend to select the shortest path to food [Camazine, 2003]
e how ants tend to select the richest food source [Camazine, 2003

e approaches to mathematical modeling of ant foraging
[Perna et al., 2012, Ryan, 2016]



Research Question

e How does terrain affect the
foraging path chosen by
ants?

e To travel between nest to food,
do ants tend to select

e the shortest path,
e the quickest path,
e some compromise between

%
A
e
e

these, or

e

e some other path all together?
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e How might individual ant
behaviors on uneven terrain Figure 4: Tetramorium

. . . caespitum [Alexander Wild, b]

contribute to collective decision

making?



Approach



Experimental Design
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Figure 5: Arena terrain scheme



Modeling Objectives
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Figure 6: Major modeling considerations



Random Reorientation Events [Khuong et al., 2013]
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. reorientation events

e upon reaching a threshold distance (S > Sthresh), the ant experiences
a “reorientation event”
e the threshold distance is generated from an exponential distribution

e the angle the ant turns through is normally distributed



Random Reorientation Events: Adjustments
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Figure 8: lllustration of adjustment accounting for
ant behavior on uneven terrain

e free path of ant (sinresh) increases if ant oriented with or against the
gradient [Khuong et al., 2013]

e ants preferentially re-orient themselves to align with or against a
surface’s topographical gradient [Khuong et al., 2013]

e severity of random reorientation decreased when following
pheromone trail and returning to nest



Complete System
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events:

e out of bounds — reflect heading to “bounce” ant
® 5> Sphresh — S =0, Sthresh = X + 3 ‘\T.V\I/\" random reorientation

event with gradient alignment bias

e close to food/nest — switch forager/returner role



Figure 9: Animation of numerically-approximated solution



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

http://www.youtube.com/v/YO6So6tgGVg?rel=0&amp;showinfo=0

Results




Results (preliminary): Path Shape
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Figure 10: Comparison of overall average nest to food foraging path for, left
to right, —7/3, 0, and 7/3 radian inclines.
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Results (preliminary): Path Length
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Figure 11: Comparison of path lengths over incline angles for corner-to-corner
trials
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e Refine model
e variable pheromone
deposition rate
e Perform further sensitivity
analyses

e pheromone grid granularity

e pheromone sensitivity radius
of ant

e behavioral weighting

e Compare model predictions
with empirical results

Figure 12: Tetramorium
caespitum [Alexander Wild, d]
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Questions?
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Background

Figure 13: Video clip demonstrating route selection by foraging ants



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

http://www.youtube.com/v/QeSErcTOLbY?rel=0&amp;showinfo=0

Figure 14:
Kilobots in action
[Mike Rubenstein, 2014]

Figure 15:
Kilobots, a
common swarm
robotics platform
[SSR Lab, Harvard, ]




Background

Figure 16: Video clip of pheromone deposit and response by foraging ants



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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System of Ordinary Differential Equations: Single Ant

effect of pheromone:

e ant accelerates d (X) _
perpendicular to its dt \v) \V.(L—R)
orientation

e magnitude of acceleration is
proportional to the
difference in concentration

of pheromone over the “L”
and “R" regions

Figure 17: Regions of ant
sensitivity to pheromone
[Perna et al., 2012]



Results (preliminary): Quickest Center-to-Center Path

Optimal Center-Center Displacement versus Ramp Incline
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Figure 18: Plot of optimal displacement for quickest center-to-center path
with schematic showing displacement.



Results (preliminary): Quickest Corner-to-Corner Path

Optimal Corner-Corner Displacement versus Ramp Incline
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Figure 19: Plot of optimal displacement for quickest corner-to-corner path

with schematic showing displacement.



Results (preliminary): Path Shape
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Figure 20: Comparison of overall average nest to food foraging path for, left
to right, —7/3, 0, and 7/3 radian inclines.



Results (preliminary): Path Length
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Figure 21: Comparison of path lengths over incline angles for center-to-center
trials



Results (preliminary): Path Smoothness
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Figure 22: Comparison of changes in heading between shapshots over incline
angles for center-to-center trials



Results (preliminary): Trip Duration
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Figure 23: Comparison of trip durations over incline angles for center-to-center
trials



Results (preliminary): Orientation Relative to Gr
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Figure 24: Comparison of orientation relative to gradient over incline angles
for center-to-center evaporation rates; the straight path is oriented at 0/3.14
radians



System of Ordinary Differential Equations: Single Ant

d (x\ v
de \v) — \av(& - ||17]?)

self-propulsion: [Ryan, 2016]

ant accelerates in the direction of its movement if ||V||{

ant accelerates against the direction of its movement if ||V]| < &
e ‘“pushes” ant towards a fixed speed

e (v is a constant that governs the magnitude of this effect



System of O i i ions: Single Ant

attraction to food/nest:

e ant experiences nest attraction if it is in the returner role
e ant experiences food attraction if it is in the forager role
e ant accelerates in the direction of the attractor

e if multiple attractors are present,

e ant is attracted to nearest food item
e ant is attracted to midpoint of nest items

Bx governs the strength of attraction
e constant for nest attraction
e for food attraction, decays exponentially with distance from food



ions: Single Ant

System of O

near nest attraction:

ant experiences attraction with magnitude increasing exponentially
with proximity to nest
e acceleration is projected onto vector perpendicular to orientation of

ant
e ensures that ant goes directly to nest if ant is nearby the nest



System of Ordinary Differential Equations: Pheromone Deposit

d . =
P= KF(p,SX1, ..., Xy)

pheromone deposit:
e the rate of pheromone deposit is proportional to total speed of ants
located at a tile
e (ants only deposit pheromone when they move)

e let f(p,Xi,...,X,) represent a sum of the speeds of of ants
associated with the pheromone point p

e £ is a constant governing the magnitude of pheromone deposit



by — a1 (cos” (@) —sin’(¢))[c1 — V- V' S]

_ 0 U<~ /3 Onew =6old + T,
1 otherwise T ~N(n/6 x g,0°),

g =5 Xt,

L1 Uy < T2 o6l 2 sin(s) Uy, Uy ~ unif(0,1)

s =
1 otherwise

random reorientation events on an incline:

e ant reorientation is biased by —x /6, 0, or 7/6 radians
e random choices made

e whether to turn or proceed straight

e if turning, whether to turn left or right
e probabilities of these choices determined by

e (¢, ant orientation relative to gradient

e ~, angle of inclination



random reorientation events on an incline:

e parameters were fit using Matlab's 1sqcurvefit and
[Khuong et al., 2013]
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Figure 25: Ant reorientation behavior on an incline (v = 7/3), observed in
[Khuong et al., 2013] versus approximated



Numerical Approximation

e deriving an analytic solution is intractable

e take a series of small time steps, using each time point to
approximate the next

e Matlab provides a set of ODE solvers that implement sophisticated
algorithms for generating numerical solutions to systems of
differential equations

e ode113 was selected to perform simulations



Sensitivity Analysis: Pheromone Evaporation Rate
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Figure 26: Comparison of durations over pheromone evaporation half lives for
center-to-center trials.



Sensitivity Analysis: Pheromone Evaporation Rate
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Figure 27: Comparison of orientations relative to gradient over pheromone
evaporation half lives for center-to-center trials.



Sensitivity Analysis: Pheromone Evaporation Rate
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Figure 28: Average trip duration over the course of a 30 minute simulation in
a center-to-center arena with 8 minute pheromone half life.



Results (preliminary): Path Shape

Figure 29: Visualization of path as simulation progresses



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

http://www.youtube.com/v/QeSErcTOLbY?rel=0&amp;showinfo=0

Results (preliminary): Path Smoothness
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Figure 30: Comparison of changes in heading between shapshots over incline
angles for corner-to-corner trials



Results (preliminary): Orientation Relative to Gra
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Figure 31: Comparison of orientation relative to gradient over incline angles
for corner-to-corner trials; the straight path is oriented at 2.819/0.321 radians



Self Propulsion on Uneven Terrain
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e ants choose walking speed to

Maximum Velocity Obtained by Ant Moving Under Constant Power

expend constant power
[Holt and Askew, 2012]

e gravity opposes uphill
movement, aids downhill
movement 10

=17 = co(0)] 4 besin0)
p=0.8115,a=1.214,6=0.205 N

e severe incline/decline

decreases overall efficiency of Ss e g e ws T a
ant movement
Figure 32: Ant velocity under

constant power on inclined terrain



Experimental Design
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Figure 33: Nest and food placement scheme



Results (preliminary): Trip Duration

40

w
v

T
—Ha

(]
=1
T

Mean Duration of Foraging Trip (sec)
N N
(=] 1%
o
—e
%

-r/3 —n/4 - /6 0 /6 w4 /3
Incline Angle (radians)

15

Figure 34: Comparison of trip durations over incline angles for corner-to-corner
trials
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