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Introduction



Motivation

Figure 1: Ant
traffic
[Alexander Wild, a]

Figure 2:
Human traffic
[Patrick T. Fallon, 2015]
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Background

Figure 3:
Tetramorium
caespitum
[Alexander Wild, c]

The collective foraging behavior of ants is well studied, including

• the strategies ants use to engage in foraging behavior [Camazine, 2003]

• how ants tend to select the shortest path to food [Camazine, 2003]

• how ants tend to select the richest food source [Camazine, 2003]

• approaches to mathematical modeling of ant foraging

[Perna et al., 2012, Ryan, 2016]
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Research Question

• How does terrain affect the

foraging path chosen by

ants?

• To travel between nest to food,

do ants tend to select

• the shortest path,

• the quickest path,

• some compromise between

these, or

• some other path all together?

• How might individual ant

behaviors on uneven terrain

contribute to collective decision

making?

Figure 4: Tetramorium
caespitum [Alexander Wild, b]
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Approach



Experimental Design

Figure 5: Arena terrain scheme
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Modeling Objectives

Self Propulsion Random Reorientation Containment

Pheromone Deposit Pheromone Evaporation Pheromone Response

Forager/Returner Roles Food Attraction Nest Attraction

Figure 6: Major modeling considerations
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Random Reorientation Events [Khuong et al., 2013]

d

dt

~x~v
s

 =

 . . .

. . .

‖v‖

 θnew = θold + T

s = 0

sthresh = X
Figure 7: “Boltzmann walker”

cartoon; blue stars denote random

reorientation events

• upon reaching a threshold distance (s > sthresh), the ant experiences

a “reorientation event”

• the threshold distance is generated from an exponential distribution

• the angle the ant turns through is normally distributed
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Random Reorientation Events: Adjustments

Figure 8: Illustration of adjustment accounting for

ant behavior on uneven terrain

Teffective = T/β

β =

{
forager role ec1p

returner role c2

sthresh = X + c3
|~s · ~v |
‖~v‖

• free path of ant (sthresh) increases if ant oriented with or against the

gradient [Khuong et al., 2013]

• ants preferentially re-orient themselves to align with or against a

surface’s topographical gradient [Khuong et al., 2013]

• severity of random reorientation decreased when following

pheromone trail and returning to nest
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Complete System

d

dt



~x1

~v1

s1

.

.

.

p1

.

.

.


=



~v1

α~̂v1

[
c
‖~v‖ − a‖~v‖ + ‖~v‖2−b~v·∇s√

‖~v‖2+(~v·∇s)2

]
+ β~x

~a−~x1
‖~a−~x1‖

+ ~̂v1⊥(L1 − R1) + γ~x~̂v⊥
(
~̂v⊥ · ~a−~x

‖~a−~x‖

)
‖~v1‖

.

.

.

κf (p1, ~x1, . . . , ~xn) + λp1

.

.

.



events:

• out of bounds → reflect heading to “bounce” ant

• s > sthresh → s = 0, sthresh = X + c3
|~s·~v |
‖~v‖ , random reorientation

event with gradient alignment bias

• close to food/nest → switch forager/returner role
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Animation

Figure 9: Animation of numerically-approximated solution
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

http://www.youtube.com/v/YO6So6tgGVg?rel=0&amp;showinfo=0


Results



Results (preliminary): Path Shape

Figure 10: Comparison of overall average nest to food foraging path for, left

to right, −π/3, 0, and π/3 radian inclines.
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Results (preliminary): Path Length

Figure 11: Comparison of path lengths over incline angles for corner-to-corner

trials
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Next Steps

• Refine model

• variable pheromone

deposition rate

• Perform further sensitivity

analyses

• pheromone grid granularity

• pheromone sensitivity radius

of ant

• behavioral weighting

• Compare model predictions

with empirical results

Figure 12: Tetramorium
caespitum [Alexander Wild, d]
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Questions?
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Background

Figure 13: Video clip demonstrating route selection by foraging ants


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

http://www.youtube.com/v/QeSErcTOLbY?rel=0&amp;showinfo=0


Motivation

Figure 14:
Kilobots in action
[Mike Rubenstein, 2014]

Figure 15:
Kilobots, a
common swarm
robotics platform
[SSR Lab, Harvard, ]



Background

Figure 16: Video clip of pheromone deposit and response by foraging ants


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

http://www.youtube.com/v/c7kiPri9ZFo?rel=0&amp;showinfo=0


System of Ordinary Differential Equations: Single Ant

effect of pheromone:

• ant accelerates

perpendicular to its

orientation

• magnitude of acceleration is

proportional to the

difference in concentration

of pheromone over the “L”

and “R” regions

d

dt

(
~x

~v

)
=

(
. . .

~̂v⊥(L− R)

)

Figure 17: Regions of ant
sensitivity to pheromone
[Perna et al., 2012]



Results (preliminary): Quickest Center-to-Center Path

Figure 18: Plot of optimal displacement for quickest center-to-center path

with schematic showing displacement.



Results (preliminary): Quickest Corner-to-Corner Path

Figure 19: Plot of optimal displacement for quickest corner-to-corner path

with schematic showing displacement.



Results (preliminary): Path Shape

Figure 20: Comparison of overall average nest to food foraging path for, left

to right, −π/3, 0, and π/3 radian inclines.



Results (preliminary): Path Length

Figure 21: Comparison of path lengths over incline angles for center-to-center

trials



Results (preliminary): Path Smoothness

Figure 22: Comparison of changes in heading between shapshots over incline

angles for center-to-center trials



Results (preliminary): Trip Duration

Figure 23: Comparison of trip durations over incline angles for center-to-center

trials



Results (preliminary): Orientation Relative to Gradient

Figure 24: Comparison of orientation relative to gradient over incline angles

for center-to-center evaporation rates; the straight path is oriented at 0/3.14

radians



System of Ordinary Differential Equations: Single Ant

d

dt

(
~x

~v

)
=

(
~v

α~̂v(ξ2 − ‖~v‖2)

)

self-propulsion: [Ryan, 2016]

• ant accelerates in the direction of its movement if ‖~v‖ξ
• ant accelerates against the direction of its movement if ‖~v‖ < ξ

• “pushes” ant towards a fixed speed

• α is a constant that governs the magnitude of this effect



System of Ordinary Differential Equations: Single Ant

d

dt

(
~x

~v

)
=

(
. . .

β~x
~a−~x
‖~a−~x‖

)

attraction to food/nest:

• ant experiences nest attraction if it is in the returner role

• ant experiences food attraction if it is in the forager role

• ant accelerates in the direction of the attractor

• if multiple attractors are present,

• ant is attracted to nearest food item

• ant is attracted to midpoint of nest items

• β~x governs the strength of attraction

• constant for nest attraction

• for food attraction, decays exponentially with distance from food



System of Ordinary Differential Equations: Single Ant

d

dt

(
~x

~v

)
=

(
. . .

γ~x~̂v⊥
(
~̂v⊥ · ~a−~x

‖~a−~x‖

))
β = c1e

−c2‖~a−~x‖

near nest attraction:

• ant experiences attraction with magnitude increasing exponentially

with proximity to nest

• acceleration is projected onto vector perpendicular to orientation of

ant

• ensures that ant goes directly to nest if ant is nearby the nest



System of Ordinary Differential Equations: Pheromone Deposit

d

dt
p = κf (p, s~x1, . . . , ~xn)

pheromone deposit:

• the rate of pheromone deposit is proportional to total speed of ants

located at a tile

• (ants only deposit pheromone when they move)

• let f (p, ~x1, . . . , ~xn) represent a sum of the speeds of of ants

associated with the pheromone point p

• κ is a constant governing the magnitude of pheromone deposit



Events

t =

0 U1 < γ b1−a1(cos2(φ)−sin2(φ))[c1−~̂v·∇̂S]
π/3

1 otherwise

s =

−1 U2 <
π−2d2 cos(φ)[a2−2b2 sin(φ)]

2π

1 otherwise

θnew = θold + T ,

T ∼ N (π/6× g , σ2),

g = s × t,

U1,U2 ∼ unif(0, 1)

random reorientation events on an incline:

• ant reorientation is biased by −π/6, 0, or π/6 radians

• random choices made

• whether to turn or proceed straight

• if turning, whether to turn left or right

• probabilities of these choices determined by

• φ, ant orientation relative to gradient

• γ, angle of inclination



Events

random reorientation events on an incline:

• parameters were fit using Matlab’s lsqcurvefit and
[Khuong et al., 2013]

Figure 25: Ant reorientation behavior on an incline (γ = π/3), observed in

[Khuong et al., 2013] versus approximated



Numerical Approximation

• deriving an analytic solution is intractable

• take a series of small time steps, using each time point to

approximate the next

• Matlab provides a set of ODE solvers that implement sophisticated

algorithms for generating numerical solutions to systems of

differential equations

• ode113 was selected to perform simulations



Sensitivity Analysis: Pheromone Evaporation Rate

Figure 26: Comparison of durations over pheromone evaporation half lives for

center-to-center trials.



Sensitivity Analysis: Pheromone Evaporation Rate

Figure 27: Comparison of orientations relative to gradient over pheromone

evaporation half lives for center-to-center trials.



Sensitivity Analysis: Pheromone Evaporation Rate

Figure 28: Average trip duration over the course of a 30 minute simulation in

a center-to-center arena with 8 minute pheromone half life.



Results (preliminary): Path Shape

Figure 29: Visualization of path as simulation progresses


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

http://www.youtube.com/v/QeSErcTOLbY?rel=0&amp;showinfo=0


Results (preliminary): Path Smoothness

Figure 30: Comparison of changes in heading between shapshots over incline

angles for corner-to-corner trials



Results (preliminary): Orientation Relative to Gradient

Figure 31: Comparison of orientation relative to gradient over incline angles

for corner-to-corner trials; the straight path is oriented at 2.819/0.321 radians



Self Propulsion on Uneven Terrain

d

dt

(
~x

~v

)
=

 ~v

~̂v
[

c
‖~v‖ − a‖~v‖+ ‖~v‖2−b~v ·∇s√

‖~v‖2+(~v ·∇s)2

]
• ants choose walking speed to

expend constant power

[Holt and Askew, 2012]

• gravity opposes uphill

movement, aids downhill

movement

• severe incline/decline

decreases overall efficiency of

ant movement

Figure 32: Ant velocity under

constant power on inclined terrain



Experimental Design

Figure 33: Nest and food placement scheme



Results (preliminary): Trip Duration

Figure 34: Comparison of trip durations over incline angles for corner-to-corner

trials
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