
 We present a model of traffic in the greater Seattle area to understand how an increasing frequency of 
self-driving cars will change traffic dynamics in the area.  We apply  a two-component micro/macro traffic 
simulation to data for portions of Interstates 5, 90, 405, and State Route 520 to consider the impact of 
autonomous vehicles on regional traffic flow. We consider 0%, 10%, 50%, and 90% autonomous traffic.
 Our micro model is designed to make predictions about the impact of self-driving vehicles on 
fundamental traffic dynamics and employs a cellular automata approach, inspired by  the work of Nagel and 
Schrekenberg, to model interactions between a number of independent vehicles on a road. In this simulation, 
vehicles exhibit simple following behavior and experience occasional random deceleration events. We introduce 
a distinction between self-driving and human-driven cars, where autonomous vehicles exhibit  more uniform 
cruising speed compared to human drivers and can follow safely at a much closer distance compared to 
human drivers. 
 Using this micro-level simulation, we predict a relation between traffic speed and traffic density for 
traffic with a varying composition of autonomous vehicles. Our macro model employs a system of ordinary 
differential equations to investigate the flow of traffic between segments of road in the region of study. We 
assess the impact of self-driving traffic composition on performance of the regional highway network at peak 
and average traffic loads, measuring trip  times along each major highway and between a representative set of 
regional destinations. The travel time predictions of the macro model are compared to archived travel time 
data from the the Washington State Department of Transportation (WSDOT).
 These models, in conjunction, facilitate insightful study of how different percentages of self-driving cars 
on the motorways change traffic flow under heavy  and light traffic conditions. The quantitative accuracy of our 
macro model is observed to decline significantly with increasing traffic loads. Nevertheless, the results of our 
study demonstrate clear qualitative trends that  inform our recommendations. Although our macro model does 
not make quantitatively accurate predictions, we observe a trend indicating that at high traffic densities, traffic 
delays decrease with increasing percentages of self-driving cars on the road. 
 Analysis of our micro model reveals that assigning traffic lanes for the exclusive use of autonomous 
vehicles can be a boon to traffic flow efficiency. When the concentration of self-driving cars rises to above 5%, 
our micro model predicts that it  becomes advantageous to implement at least one ``self-driving-car only" 
lane in roads with 3 or more lanes. Under some circumstances, this strategy  has the potential to result in 
reduced travel delays for human-driven and autonomously controlled vehicles alike.
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Jay Inslee
Office of the Governor
PO Box 40002
Olympia, WA 98504-0002

January 23, 2017

Dear Governor Inslee,

We write to you concerning your request for an analysis of the impact of self-driving
cars on popular roadways in Thurston, Pierce, King, and Snohomish counties. This letter
summarizes our exploration of how traffic dynamics on I-5, I-90, I-405, and State Route
520 will change as the percentage of self-driving cars on these roads increases.

It is becoming increasingly likely that commercially available self-driving, cooperating
cars will appear on roadways within the next decade. These cars will play an important role
in determining the overall traffic patterns observed in the Puget Sound region. We approach
understanding the impact of self-driving cars on traffic in the greater Seattle area with two
models. First, we examine fundamental traffic dynamics with a discrete cellular automata
simulation, which considers the effects of self-driving cars on traffic at the micro level, and
then we apply these results to a macro model specific to the Puget Sound region.

Our preliminary results suggest that the introduction of self-driving cars to the motorways in
question will increase traffic flow when there is any effect at all. This result is encour-
aging in that we project that self-driving cars will will reduce traffic delays encountered by
motorists on the crowded highways of the region. We are confident that our model provides a
reasonable qualitative forecast of the impact of self-driving cars on motorways.Our sim-
ulation approximates current traffic patters on popular routes (e.g. Federal Way to Seattle)
to within 10% accuracy for most trips at average traffic volume. However, at higher traffic
density, this model is far less accurate at simulating travel times, and a more detailed traffic
model should be commissioned before quantitative predictions are taken seriously. In short,
the simplifying assumptions that made the rapid delivery of this report possible necessitate
that this preliminary investigation be interpreted cautiously. For example, we have
not explored the psychological effects that the presence of self-driving cars will have on other



motorists, the patterns of continuous change in traffic load on Seattle-area roads over the
course of a day, the ways that inclement weather conditions will affect all forms of traffic,
and a number of other considerations that may be more significant than we understand at
present.

The results of our study lead us to believe that self-driving cars will affect traffic positively
or not at all for average traffic flow. At higher traffic volumes where traffic delays begin
to be encountered, we observe a trend that increasing percentages of self-driving cars lead
to reduced travel time for everyone, although this reduction is not extreme (perhaps a half
hour delay reduced by ten minutes). We also note that although this result is consistent
with what our expectations, the reduced accuracy of our model at high traffic volumes calls
this result into question. Our simulation suggests that when self-driving cars impact traffic
flow at all, they improve roadways for everyone, not only for the owners of self-driving
cars. We believe that this observation has important policy recommendations implications.

First and foremost, this study indicates that policy designed to enable self-driving cars to
naturally integrate into the sections of Interstates under investigation will not negatively
affect driving conditions. Furthermore our micro model predicts that, with a percentage
of self-driving cars as low as 5% on moderately crowded roads, it is advisable to designate
a “self-driving-cars only” lane. Such a lane is only beneficial to traffic flow on roads
at least three lanes wide. We recognize that such autonomous-only lanes may be politically
sensitive and that factors not included in our models may affect the performance of such lanes
in reducing traffic, so we strongly encourage that policy to create these lanes be enacted
on a trial basis to assess its feasibility.

Please do not hesitate to direct any further inquiries regarding the contents of this letter
to our communications office. We would like to thank you for consulting with us, and we
remind you that our firm is now well-equipped to provide similar impact studies on other
roadways in a fraction of the time.

Regards,

Traffic Impact Analysis Team (57313)
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Summary Sheet
We present a model of traffic in the greater Seattle area to understand how an increasing

frequency of self-driving cars will change traffic dynamics in the area. We apply a two-
component micro/macro traffic simulation to data for portions of Interstates 5, 90,
405, and State Route 520 to consider the impact of autonomous vehicles on regional traffic
flow. We consider 0%, 10%, 50%, and 90% autonomous traffic.

Our micro model is designed to make predictions about the impact of self-driving vehicles
on fundamental traffic dynamics and employs a cellular automata approach, inpsired by
Nagel and Schrekenberg [1], to model interactions between a number of independent vehicles
on a road. In this simulation, vehicles exhibit simple following behavior and experience
occasional random deceleration events. We introduce a distinction between self-driving and
human-driven cars, where autonomous vehicles exhibit more uniform cruising speed
compared to human drivers and can follow safely at a much closer distance, compared
to human drivers.

Using this micro-level simulation, we predict a relation between traffic speed and traffic
density for traffic with a varying composition of autonomous vehicles. Our macro model
employs a system of ordinary differential equations to investigate the flow of traffic between
segments of road in the region of study. We assess the impact of self-driving traffic com-
position on performance of the regional highway network at peak and average traffic loads,
measuring trip times along each major highway and between a representative set of regional
destinations. The travel time predictions of the macro model are compared to archived
travel time data from the the Washington State Department of Transportation (WSDOT).

These models, in conjunction, facilitate insightful study of how different percentages of
self-driving cars on the motorways change traffic flow under heavy and light traffic condi-
tions. The quantitative accuracy of our macro model is observed to decline significantly with
increasing traffic loads. Nevertheless, the results of our study demonstrate clear qualitative
trends that inform our recommendations. Although our macro model does not make quanti-
tatively accurate predictions, we observe a trend indicating that at high traffic densities,
traffic delays decrease with increasing percentages of self-driving cars on the road.

Analysis of our micro model reveals that assigning traffic lanes for the exclusive use of
autonomous vehicles can be a boon to traffic flow efficiency. When the concentration of
self-driving cars rises to above 5%, our micro model predicts that it becomes advantageous
to implement at least one “self-driving-car only” lane in roads with 3 or more lanes.
Under some circumstances, this strategy has the potential to result in reduced travel
delays for human-driven and autonomously controlled vehicles alike.

Further study of the potential effects of autonomous vehicles on urban traffic is necessary.
Our analysis does not address important questions related to self-driving cars that could
have huge impacts on traffic conditions in the Seattle metropolitan area, such as the impact
of autonomous technology on the total number of vehicles on the road and the temporal
distribution of traffic loads. Further modeling refinement is necessary at the macro level to
make rigorous quantitative predictions about the impact of autonomous vehicles on regional
traffic patterns; our model excludes many potentially significant factors such as accidents,
road-closings, inclement weather, and aggressive drivers, to name but a few. Nonetheless,
our model rigorously demonstrates that including significant proportion of self-driving cars
on the road impacts traffic dynamics and suggests that such changes in traffic composition
might meaningfully, although not totally, reduce the traffic congestion experienced by Seattle
motorists.

3



Team # 57313 Page 4 of 19

1 Introduction

1.1 Motivation

With the continual rise of urbanization, the logistics of driving in metropolitan areas are an
ever-pressing concern. In the Seattle metropolitan area, traffic jams, which occur regularly
during weekday rush hours, are of particular concern. In 2015, Seattle was ranked 7th in the
nation for the worst traffic conditions for auto commuters [2]. The cost of traffic is no mere
inconvenience – it has a high economic, environmental, and quality of life price. Seattle’s
auto commuters are estimated to lose 63 hours a year to traffic delays, which are estimated
to cost each commuter $1491 per year. In aggregate, 62,136,000 gallons of fuel are wasted
each year in Seattle due to traffic delays, contributing to pollution and climate change. The
net cost of traffic to the city is estimated at $3295 million annually. [2].

Engineers can attempt to ameliorate traffic congestion by adding extra lanes to busy free-
ways; however, there is a growing incentive to consider how self-driving cars will impact
traffic[3]. With an annual growth rate hovering at 2%, Seattle roadways are quickly becom-
ing more crowded, and given the concentration of tech corporations in the region (such as
Google), it is likely that the greater Seattle area will be the first to see a rise in the per-
centage of self-driving cars on the road. We hope to understand how self-driving cars will
affect traffic on Interstates 5, 90, and 405, as well as on State Route 520. A successful model
will provide us with an understanding of the impact of self-driving cars, which in turn will
inform road design and policy changes to better facilitate transportation.

1.2 Literature Search

Mathematical models of traffic can generally be classified as either discrete or continuous.
In an extensive analysis of traffic models, one author estimates that in the past 50 years,
researchers across many fields have suggested nearly 100 different ways of modeling traf-
fic. [4] While a comprehensive review of each of these models is impossible, the ones we
found most useful merit some discussion. We began by reproducing Kai Nagel and Michael
Schreckenberg’s cellular automata model of single-lane traffic [1], which gave us insight into
the traffic modeling process and enabled us to collect traffic flux data for generic traffic flow.
We applied these results to a model that we independently developed based on the guiding
principles presented in Fowkes and Mahony’s An Introduction to Mathematical Modeling.

In the course of our research, we also found Kachroo and Sastry’s Traffic Flow Theory
text [5] to be a useful resource for evaluating the results of our model. Although their
various PDE models did not lend themselves to adaptation to account for self-driving cars,
we were able to reproduce the flux-versus-traffic-density curves for the Greenshield and and
Greenberg models that appear in Kachroo and Sastry’s work, which we used as a metric for
success of our fundamental traffic model. It would be interesting to compare our results to
a PDE model that incorporates self-driving cars.

One of the most prevalent traffic phenomena that appears in research concerns “phantom
traffic jams,”—traffic back-ups that happen even when nothing obstructs traffic flow—which
occur when human drivers act imperfectly. In particular, Helbing identifies overcorrec-
tion and chain reaction as two ways that mathematical traffic models successfully simulate
these phantom traffic jams [4]. We used this information to determine reasonable ways of
modeling self-driving cars as distinct from human-driven cars.
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1.3 Terminology

Some of the following terminology has been adapted from the problem statement.

• A mile-marker is a roadside marker that measures distance along the road from a
fixed point.

• A road segment is any portion of road between two consecutive mile-markers.

• The average daily traffic (ADT) is the average number of cars per day driving on
the road.

• The increasing direction is Northbound for N-S roads and Eastbound for E-W roads.
The decreasing direction is the opposite of the increasing direction.

1.4 Hypotheses

Before describing our model, we discuss our hypotheses for how self-driving, communicating
cars will affect traffic flow. We take on good faith that by the time self-driving cars are road-
ready, they will (1) consistently have shorter event-response time (such as the time it takes to
suddenly brake) than a human and (2) have better situational awareness (knowledge of traffic
patters well-ahead and well-behind them) than a human. In addition, we do not account
for the changes in traffic engendered by inclement weather, although according to an article
in The New York Times, self-driving cars do not yet have the capacity to reliably navigate
rain and snow conditions [6]. Based on these qualitative assumptions, we hypothesize that
increasing frequencies of self-driving cars will:

1. reduce the travel time of going from A to B on busy roadways

2. decrease the variability of traffic flux across road segments

3. reduce the frequency of phantom traffic jams

2 Overall Assumptions

• We assume that the density of traffic on a road segment is constant and evenly spread
across all available lanes. We also neglect the inefficiencies in traffic flow introduced
by lane-changing.

• We assume that traffic is divided evenly between increasing and decreasing directions
on roadways.

• We assume that “all roads are created equal.” That is, interstates, highways, state
routes, etc. are not treated differently.

• Furthermore, we assume that all roads are flat and straight, not changing in altitude
or direction.

• Our model treats only major highways in the Puget Sound area: I-5, I-90, I-405, and
SR 520.

5
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• Our model neglects intersections between major highways, treating each as an inde-
pendent stretch of road.

• We assume that highway conditions on the boundaries of the Puget Sound region are
wide-open.

• We assume self-driven cars will randomly slow down with half the probability that a
human would.

• We assume that a near-equilibrium traffic distribution is reached at both peak and
normal traffic loads.

3 Variables and Definition of Standard Conditions

3.1 List of Variables

3.1.1 Micro Model

• vi: the velocity of the ith car

• g: the minimum allowable distance between a car and the car ahead.

• p: the probability that a car will randomly decrease in velocity.

3.1.2 Macro Model

• Di, units [miles]: the distance of the ith road segment

• Ni, units [cars]: the total number of cars on the ith road segment

• Vi, units [miles/hour]: the velocity of cars on the ith road segment

• Fi, units [cars/hour]: the flux of cars on the ith road segment

• NLi, unitless: the number of lanes on the ith road segment

• Li, units [miles]: the distance of ”lane miles” on the ith road segment

• ∆Ci, units [cars/hour]: the rate at which cars drive onto the ith road segment (or off
the (i− 1)th road segment)

• ρi, units [cars/mile]: the effective density of cars over the total length of lanes present
ith road segment

• ρ̂i, units [cars/mile]: the density of cars on the ith road segment, neglecting the presence
of multiple traffic lanes

3.2 Definition of Standard Conditions

When running our simulations, we defined the following set of standard conditions:

6
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3.2.1 Micro Model

• The maximum velocity for cars was set to 5 units.

3.2.2 Macro Model

• On average, 8% of the daily traffic volume occurs during peak travel hours. Thus,
we model non-peak traffic conditions as having a traffic load equivalent to ADTC and
peak traffic conditions as experiencing a traffic load equivalent to 192% ADT.

• The nominal speed limit for all of the roads we use in our model is 60 miles per hour.
We assume that traffic leaves the system at the end of each highway at 50 miles per
hour.

4 The Model

Our modeling efforts are divided into two main levels: macro and micro. Our micro model,
a discrete cellular automata model inspired by [1], predicts the relationship between traffic
density and traffic speed. This model is used to predict how this relationship between traffic
density and flow rate will change with different concentrations of self-driving vehicles on
the road. Our macro model, a system of ordinary differential equations, considers how the
relationship between traffic density and traffic speed will affect regional traffic patterns in
the Puget Sound area. This model ultimately makes predictions about expected travel time
between regional destinations of interest.

4.1 Micro/Discrete Model

To see how the fundamental diagram changes as the number of self-driving cars increases,
we set up a cellular automata model based on work by Nagel and Schrekenberg. In their
original model, each car follows three rules at each time-step However, to model the effects
of self-driving cars, we used the following modified rules.

1. Acceleration: The ith car moving with velocity vi will increase its velocity by 1 so
long as the car ahead is greater than vi + g or vi + g units away, where g = 2 for a
human driver, and 1 for self-driven car.

2. Slowing down: If the car ahead is instead j units away with j ≤ vi, the velocity will
decrease to j − g or 0 if j − g < 0.

3. Randomization: Every car has a probability p of randomly decreasing their velocity
by 1. For human-driven cars p = 0.1, and for self-driven cars, ps = 0.05.

Once the velocities for every car is updated, each car is then moved ahead by vi units. The
density was calculated by counting the number of times a car lands on the center cell of the
track, while the flux is calculated by counting the number of times a car passes through the
center cell.
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4.2 Using the Micro Model to Inform the Macro Model

Having developed a micro model, we need to extract useful density and velocity informa-
tion to run the macro model. We do this by fitting our data from the micro model to a
simplification of the curve shown in Figure 1, which we have adapted from [7]. The curious
reader can find a more in-depth explanation of this fit in Dym’s text. Our micro model data
fits the red curve; however, for the sake of more efficient computation, we have chosen to
apply a linear fit between the points (ρcrit,vmax) and (ρmax, 0). This linear fit was inspired
by Greenshield’s model of the relationship between traffic flow and traffic speed [5]. Using
this fit, we can determine the relationship between traffic density (ρ) and flow speed (v) in
our macro model.

Figure 1: Original (in red, from [7]) and simplified flux curves illustrating speed-density
relationship.

Our micro model predicts the following ρcrit values for differing proportions of self-driving
traffic. (Note that no significant difference in ρcrit was observed between 0% self-driving
traffic and 10% self-driving traffic.)

ρcrit versus self-driving traffic proportion
0-10% 50% 90%
0.13 0.16 0.18

4.3 Macro/Continuous Model

Our model, at the most fundamental level, traces the evolution of the number of cars on
the road. Before further developing our simulation, we must establish the following useful
quantities for the ith road segment.

Li = Di ×NLi (1)

8
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gives the “lane length” of the road. This essentially allows cars to distribute evenly across
the number of lanes available on road segment i. We next calculate car density,

ρi =
Ni

Li

(2)

which we will use in computing the net car flux through the ith road segment, given as
developed by Fowkes and Mahony in their text, An Introduction to Mathematical Modeling,
to be

Fi = ρi × Vi (3)

We begin with a first-order differential equation for the rate of change in time of the total
number of cars on the ith road segment. We assume that cars flow into each segment at
the road-length density of traffic in the preceding segment and the velocity of cars at that
segment. We assume that cars flow out of each segment at the road-length density of traffic
in that segment and the velocity of cars at the next segment. For a visualization of an
arbitrary internal road segment, see Figure 2. Additionally, we assume that cars enter or
exit the segment at a constant rate determined by the difference in average traffic between
the previous segment and the current segment. This gives the relationship:

dNi

dt
= vi × ρi−1 − Vi+1 × ρi + ∆Ci −∆Ci+1 (4)

Figure 2: Schematic of ith road segment as a circular node. Here mm-x refers to mile-marker
x, and ∆C keeps track of the cars that have entered or exited the road between
nodes.

9
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We model each direction of travel on each highway as a separate one-dimensional chain
of highway segments. We do not model intersections between highways. For each highway
system road segment at the beginning of a highway chain, we model cars as entering at a
fixed rate C determined by the AADT recorded for the road segment. For each highway
system road segment at the end of a highway chain, we model cars as leaving with traffic
speed 50 miles per hour at the current traffic density of the end segment. This approach
yields several systems of ordinary differential equations, which can be evaluated numerically.
We use the Numpy odeint tool for this purpose [8].

We determine the traffic speed V at each segment from its density ρ using a smooth
interpolation using B-splines of the density-flow rate predictions made by the discrete traffic
flow model. To run the regional traffic model at peak traffic conditions, we simply scale the
net traffic load uniformly across the system by 1.92, reflecting the observation that peak
traffic volume observed over the course of an hour represents 8% of ADT on that segment.

Tpeak/24 = 0.08× Tavg
Tpeak = 24× 0.08Tavg = 1.92× Tavg

ADT for each direction of each segment is one-half ADT reported for each segment, reflecting
the assumption that traffic load at each segment is split evenly between the increasing and
decreasing directions.

We run the simulation, beginning with initial conditions of a uniform distribution of
traffic between road segments at a density of 25 cars per lane-mile, until it reaches a near-
equilibrium state. Then, the density of traffic on each road segment is recorded. (For reported
simulations, data on traffic density was collected after five hours of simulation time). This
density information, coupled with the relationship between traffic density and traffic speed
predicted by the micro model, yields travel time t between road segments i and j according
to the following relationship

t =

j∑
n=i

Dn

V (ρn)

4.4 Micro/Discrete Model Validation

The results from the discrete model closely resembles results found in all of the literature we
observed[5, 7]. Specifically, we looked to reproduce results from Nagel and Schrekenberg[1]
as a starting point for modeling the effects of self-driving cars. We were also able to very
closely fit our results to a model in Dym [7].

4.5 Macro/Continuous Model Validation

We validated our traffic model by comparing trip times for northbound and southbound
traffic on popular stretches of roads to actual traffic data from the WSDOT website [9].
Specifically, we compared our model’s predictions for travel times between a representative
sampling of destinations of interest under average traffic conditions to WSDOT travel time
data for non-peak traffic conditions. Our model made reasonable predictions under these
conditions, often with error mostly below 20%. However, the macro model fares much more
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poorly at higher traffic levels, exhibiting significant error. Traffic jams – apparent through
significantly lengthened travel time between destinations – do not manifest until quantita-
tive traffic loads much beyond the traffic levels observed at peak traffic hours. At traffic
loads approximately 50% greater than observed peak traffic and above, significant delays
are observed on some highways, in particular I-5 South and I-405. This inconsistency may
be due to the decision to model high-load traffic a static elevated demand upon highway
infrastructure instead of a process where demand grows, peaks, and declines over time. Op-
timistic boundary conditions, which assume that traffic leaves the system mostly unimpeded
may also contribute to the excess optimism of the model. Discrepancies in the translation of
traffic flow predictions from the micro model to the macro model – such as the limited fidelity
of the Greenshield-like linear fit to the micro model’s predictions or distorted unitary scale
in analysis of the micro model’s predictions may also account for the discrepancy. Also, the
neglect of traffic-blocking incidents such as breakdowns and accidents may why our traffic
predictions are not as dire as WSDOT’s 95% Worst Case Scenario travel times. Although
further refinement this macro model is necessary for it to have quantitative relevance, we
believe that it does have qualitative value in understanding the impact of the introduction of
self-driving cars on Seattle traffic. Observed model predictions on travel times are tabulated
below beside relevant reported WSDOT data.

Average Trip Times on Key Routes (Increasing/Decreasing)
Origin Dest Road

ID
Distance
(miles)

Avg.
Travel
Data
(min)

Avg.
Travel
Model
(min)

% Error

Fed.
Way

Seattle 5 22.2 22 22.6 3

Seattle Everett 5 26.9 27 29.4 9
Seattle Issaquah 90 15.7 16 14.9 7
Bellvue Redmond 520 6.6 7 5.9 16
Renton Bellvue 405 11.2 11 11.1 1
Seattle Fed.

Way
5 22.2 24 22.6 6

Everett Seattle 5 26.9 27 29.4 9
Issaquah Seattle 90 15.7 17 14.9 12
Redmond Bellvue 520 6.6 8 5.9 26
Bellvue Renton 405 11.2 11 11.1 1

11
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Peak Trip Times on Key Routes (Increasing/Decreasing)
Origin Dest Road

ID
Distance
(miles)

8:00 am
Worst-Case
Travel Data
(min)

8:00 am
Peak
Travel
Model
(min)

% Error
Peak
Travel
Model

1.6×
Peak
Travel
Model

% Error
1.6×
Peak
Travel
Model

Fed.
Way

Seattle 5 22.2 69 22.7 67 25.1 64

Seattle Everett 5 26.9 28 29.8 6 34.1 22
Seattle Issaquah 90 15.7 22 14.9 32 15.7 29
Bellvue Redmond 520 6.6 8 5.9 26 6.4 20
Renton Bellvue 405 11.2 51 11.8 77 18.0 64
Seattle Fed.

Way
5 22.15 25 14.9 40 25.4 2

Everett Seattle 5 26.94 89 30.0 66 76.8 14
Issaquah Seattle 90 15.71 36 14.3 60 15.7 56
Redmond Bellvue 520 6.62 11 5.9 46 6.4 42
Bellvue Renton 405 11.2 27 11.8 56 19.3 28

5 Results

5.1 Micro Model

Our micro model predicts that an increase in traffic flow at elevated traffic densities will be
observed comparing human-driven traffic to half self-driven traffic and a further increase in
traffic flow at elevated traffic densities will be observed as the saturation of self-driving cars
in traffic increases to 90%. These results can be seen in Figures 4 and 3, which display the
relationship between traffic density and traffic flux and traffic speed, respectively.

Figure 3, which visualizes the relationship between traffic flux and traffic density, reveals
that an approximately 40% increase in the maximal throughput of a road can can be realized
through the widespread introduction of self-driving cars to the roadways. An approximately
20% increase in maximal throughput of traffic can be realized through 50% introduction of
self-driving technology. Across different compositions of self-driving vehicles, flux is observed
to be nearly identical up to ρcrit for human-driven traffic, approximately 34 cars per lane
mile. Beyond that density, flux of traffic with self-driving cars begins to exceed the flux
of human-driven traffic– by a difference of constant magnitude for many density conditions.
The magnitude of these difference greatly exceeds the variance that was observed in the data
from stochastic simulation.

Figure 4 visualizes the relationship between traffic speed and density, for varying traffic
compositions. Traffic speed is generally similar across the different traffic composition up to
ρcrit for human-driven traffic. Beyond this point, the traffic speed of human-driven traffic
begins to decline noticeably at greater density levels. The speed of mostly and partially
self-driving traffic begins to decline at slightly greater densities but still is greater than that
of human-driven traffic, with mostly self-driving traffic tending to move faster than partially
self-driving traffic. The predicted traffic speeds become more similar across the spectrum of
traffic composition, again, at high traffic density.
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Figure 3: density and traffic flux data from our cellular automata model.

Figure 4: density and velocity data from our cellular automata model.
Each color represents different percentages of self-driven cars.

5.2 Macro Model

As mentioned in Section 4.5, the macro level model of regional traffic patterns does not
correspond well to observed peak volume traffic conditions in a quantitative sense. However,
the model makes qualitative predictions that may be of interest to policy makers.

As would be expected, the model predicts that the introduction of self-driving cars do tend
to ameliorate traffic jams. Our micro model does not predict a significant difference in traffic
behavior between 0 and 10% composition of self-driving cars in traffic. However, an effect
on ρcrit was observed when the prevalence of self-driving cars grew to 50% and, also, 90%
(Section 4.5). This difference in ρcrit predicted by the micro model was significant to observe
reduction of traffic delays in the macro model. In all measured cases, the introduction of
self-driving cars was observed to reduce or not affect travel times.

However, widespread introduction of the self-driving car is no silver bullet. Under heavy
traffic loads, trip times did indeed increase with 90% self-driving traffic composition. For
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example, under average traffic conditions a trip down I-5 South is predicted to take 117
minutes. Under the maximum traffic load measured with no self-driving component of traffic,
the duration of this trip increases to 169 minutes. However, at the maximum measured traffic
load the trip is predicted to take only 145 minutes. Thus, the widespread introduction of
self-driving cars has ameliorated – but not eliminated – traffic delays. Our model predicts
that the introduction of self-driving cars has the potential to near completely eliminate – at
most – minor traffic delays. Major traffic delays will likely not be completely eliminated by
the introduction of self-driving cars, but – even under the conservative assumptions of our
models – noticeably reduce traffic delays.
Predicted Effect of Percentage of Self-Driving Cars on Trip Times (Average Traffic)
Road Trip Times for 0-

10% (min)
Trip Times for
50% (min)

Trip Times for
90% (min)

I-5 North 117.4 117.4 117.4
I-5 South 117.4 117.4 117.4
I-90 East 23.4 23.4 23.4
I-90 West 23.4 23.4 23.4
I-405 North 30.3 30.3 30.3
I-405 South 30.3 30.3 30.3
SR 520 East 12.8 12.8 12.8
SR 520 West 12.8 12.8 12.8

Predicted Effect of Percentage of Self-Driving Cars on Trip Times (Peak Traffic)
Road Trip Times for 0-

10% (min)
Trip Times for
50% (min)

Trip Times for
90% (min)

I-5 North 118.0 117.5 117.4
I-5 South 118.4 117.8 117.7
I-90 East 23.4 23.4 23.4
I-90 West 23.4 23.4 23.4
I-405 North 31.2 30.7 30.5
I-405 South 31.2 30.7 30.4
SR 520 East 12.9 12.8 12.8
SR 520 West 12.9 12.8 12.8

Predicted Effect of Percentage of Self-Driving Cars on Trip Times (1.33× Peak Traffic)
Road Trip Times for 0-

10% (min)
Trip Times for
50% (min)

Trip Times for
90% (min)

I-5 North 121.4 119.0 118.1
I-5 South 123.6 120.3 119.2
I-90 East 23.7 23.5 23.4
I-90 West 23.7 23.5 23.4
I-405 North 33.6 32.2 31.7
I-405 South 33.5 32.2 31.7
SR 520 East 13.0 12.9 12.8
SR 520 West 13.0 12.9 12.8
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Predicted Effect of Percentage of Self-Driving Cars on Trip Times (1.5× Peak Traffic)
Road Trip Times for 0-

10% (min)
Trip Times for
50% (min)

Trip Times for
90% (min)

I-5 North 125.2 121.3 119.5
I-5 South 146.6 134.05 127.0
I-90 East 24.0 23.6 23.5
I-90 West 24.0 23.6 23.4
I-405 North 35.9 34.1 33.1
I-405 South 35.8 33.9 32.9
SR 520 East 13.2 13.0 12.9
SR 520 West 13.2 13.0 12.9

Predicted Effect of Percentage of Self-Driving Cars on Trip Times (1.6× Peak Traffic)
Road Trip Times for 0-

10% (min)
Trip Times for
50% (min)

Trip Times for
90% (min)

I-5 North 127.7 123.1 120.8
I-5 South 169.0 154.4 145.0
I-90 East 24.2 23.7 23.6
I-90 West 24.2 23.8 23.5
I-405 North 41.5 36.0 34.5
I-405 South 40.7 35.8 34.2
SR 520 East 13.4 13.1 13.0
SR 520 West 13.3 13.0 13.0

Predicted Effect of Percentage of Self-Driving Cars on Total Traffic Volume on Highways
0-10% Auto-
mated

50% Automated 90% Automated

Average Traffic 17657 17652 17652
Peak Traffic 34332 34062 33988
1.3× Peak Traffic 47741 46445 45922
1.5× Peak Traffic 57731 54784 53241
1.6× Peak Traffic 66119 61855 59754

6 Model Assessment

6.1 Micro Model Sensitivity Analysis

We performed a sensitivity analysis on our micro model, changing (1) the length of of the
circular track and (2) the probability that a self-driven car will spontaneously slow down
(all human-driven cars have a much higher probability of this ”imperfect driving”). In the
original paper from which we developed this model, the authors used a track length of
10,000 units. We were able to replicate the traffic effects that the authors observed using a
track length of 500 units, although for our sensitivity analysis, we doubled the track length
and observed an inconsequential change in the model output. Furthermore, the traffic-flow-
versus-density plot changes insignificantly for variation of the probability that a self-driven
car will slow down without reason. We set this parameter to 5% in our micro model, which
we believe to be conservative for a self-driving car, but our sensitivity study confirms that
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increasing this value to 10% or decreasing it to 0% do not affect the model outcome. There
are no other non-variable parameters in the model, so the results of this analysis suggest
that we are using a robust, if simple, model.

6.2 Strengths

• By approaching the problem with both a micro and a macro model, we are able to
apply relatively straightforward simulations to a more complicated problem.

• The model provides a simple, but reasonable, simulation of traffic, and given the success
of our validation study, we are confident that it produces reasonable predictions for
how self-driving cars will impact traffic, for which there is not yet any empirical data.

• The micro model produces flux, velocity, and density data that are consistent with
previous research [1],[7].

• The model is not computationally intensive, so it does not require sophisticated hard-
ware or specialized resources to replicate our work.

• The model produces travel times for normal traffic flow on popular routes that are
typically accurate to within 10% of the actual average travel time.

6.3 Weaknesses

• The macro model does not give quantitatively accurate travel times for peak periods
of travel.

• At extreme traffic loads, the distribution of traffic delays across the highway system
does not closely resemble those reported by WSDOT.

• Our micro/macro model requires that we treat stretches of road between mile-markers
as having constant density. This assumption precludes more nuanced modeling of
traffic.

• In the micro model, self-driving cars are assigned a reduced probability of “imperfect
driving,” but they do not communicate with other cars on the road.

• The micro model is only validated insofar as the traffic flux-versus-density curve pro-
duced by our data is consistent with the literature. The micro model is not expressly
compared to empirical data.

6.4 Improvements

• Our simulation produces good data for average traffic conditions, but is less reliable
for peak traffic conditions. This is unfortunate since we are most interested in how
self-driving cars will change traffic dynamics at high traffic densities. Our model should
be modified to produce more representative values for travel time at peak travel times.
This adjustment would lend credibility to predictions about the effect of percentage of
self-driving cars on traffic patterns.
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• The macro model should be extended to consider the effects of catastrophic incidents
such as breakdowns and collisions on traffic dynamics, in particular, the ability of
traffic flow to recover at different levels of self-driving traffic once such blockages are
cleared.

• Our model would be stronger if it treated the road as a continuous stretch, rather
than segments with uniform traffic density. We could perhaps use PDEs (rather than
a system of ODEs) to provide this additional detail.

• While our micro model accounts for self-driving cars being more predictable, we should
more precisely define and implement inter-car communication that would allow self-
driving cars to know more about what the vehicles in its environment are doing.

7 Dedicated Lanes for Self-Driving Cars

The decision to use a dedicated lane for self-driving cars relies heavily on the percentage of
cars that are self-driving. Here we derive a simple way to check if adding a dedicated lane
or lanes would reduce traffic, and if so, how many lanes to add.

7.1 Variables

• c: the concentration or percentage of cars which are self-driven.

• ρs: the effective density of self-driven cars

• ρcrs : the “critical density”, or the density at which flux is maximized for self-driven cars

• ρh: the effective density of human-driven cars

• ρcrh the “critical density” for human-driven cars.

• NLS The number of lanes to be dedicated to self-driven cars.

• Dm
i : The maximum number of cars in a road segment of length Di, i.e. bumper to

bumper traffic.

7.2 Discussion

Recall that the “lane length” of the ith road segment Li is defined as the product NLiDi

of the number of lanes and the length of the segment. Then the number of self-driven cars
in this road segment is given by cNi, while the number of human-driven cars is (1 − c)Ni.
Similarly, if NLS lanes are dedicated to self-driving cars, NLi − NLS lanes are dedicated to
human driven cars. To normalize units of density we will use maximum number of cars in
road segment i, Dm

i . We can then look at the effective densities for self-driven cars

ρs =
cNi

Dm
i NLS

,

and human driven cars

ρh =
(1− c)Ni

Dm
i (NLi −NLS)

.
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By requiring that the effective densities of self-driving cars and human-driven cars be below
their respective critical densities, in other words

cNi

Dm
i NLS

≤ ρcrs

and
(1− c)Ni

Dm
i (NLi −NLS)

≤ ρcrh ,

we can solve for NLS. Letting ρe = Ni

Dm
i

, we get the following inequality:

c
ρe
ρcrs
≤ NLS ≤ NLi − (1− c) ρe

ρcrh
. (5)

Our results suggest that even at high density traffic and a low concentration of self-driving
cars, for three or more lanes, designating at least one lane for self-driving cars will reduce
overall traffic.

8 Recommendations

• Our result, most simply stated, is that the more self-driving cars there are, the better
traffic will flow. This being the case, our model suggests that policy should support
the accessibility of safe, reliable self-driving cars to consumers.

• Our model predicts that while the introduction of self-driving cars may eliminate minor
traffic delays but, at best, will only reduce – not eliminate – major traffic delays.

• Our analysis suggests that for stretches of road at least three lanes wide, the designation
of a lane for the exclusive use of self-driving cars will result in more efficient traffic flow
during peak traffic hours when self-driving cars account for 5% or more of vehicles on
the road. The effectiveness of a designated lane holds so long as total traffic density is
below ∼45% which is above average peak traffic density.

• Analysis of our model does not reveal any circumstances under which the introduction
of self-driving cars resulted in decreased traffic flow efficiency, so there is no evidence
for a need to regulate self-driving cars on that account.

• The impacts of traffic delays are extremely costly across economic, environmental, and
quality of life dimensions [2]. The impact of self-driving cars, as a potential boon to
traffic flow through greater traffic efficiency but also as a potential threat by potentially
increasing total traffic volume [10], must be seriously and actively considered by policy
makers.
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