
Linear Congruence Generators

Matthew Moreno

December 2, 2015

1 Introduction

1.1 Motivation

In addition to the lottery 11, sequences of random numbers are necessary ingredients for Monte Carlo methods,

digital cryptography, and computer simulations of phenomena with random aspects, and other applications.

Over the years, several schemes to use physical phenomena that emulate the function of a mathematical

random variable have been put forward. Notably, these include use of a “sonic roulette wheel” by the

Rand Corporation to generate data for its book of “a million random digits”(Rand Corporation 20012001),

the extraction of random digits from images of lava lamps in motion (Noll, Mende, and Sisodiya 19981998),

the use of human input (e.g. on the keyboard or mouse) to generate random digits (Cole 20112011), and the

parsing of random streams of data from quantum e�ects such as the fluctuations in the magnetic field

of a vacuum (ANU Quantum Random Number ServerANU Quantum Random Number Server 20152015). While these operations give good results in

practice, they are expensive to implement and provide a slow and highly constrained bandwith of values.

Thus, deterministic mathematical operations to generate sequences of numbers that emulate the distribution

of numbers from an ideal random variable have been developed. These methods are commonly referred to

as “pseudorandom number generation.” In general, these algorithms are launched with a “seed” value from

which an initial internal state is generated. Then, a sequence is generated by repeatedly performing a

deterministic computational operation on the state to transition to a new internal state and yield a new

“random” value. It is important to note several important distinctions beetween pseudorandom number

generation and true random generation. First, future values produced by a pseudorandom generator, unlike

the future value of a true random variable, can be deduced from information on the current state of the
1
if it is being conducted fairly, at least!

1

pseudorandom generator—pseudorandom generation is a completely deterministic process. Also, unlike ideal

random variables, sequences of numbers generated by pseudorandom methods are periodic. There are a finite

number of internal states that a pseudorandom generator can be in so periodicity arises in the output of the

generator when it eventually returns to a previously encountered internal state. John Von Neumann, who

worked with early computing devices such as the ENIAC, commented on these important distinctions, noting

that that “any one who considers arithmetical methods of producing random digits is, of course, in a state of

sin” (Neumann 19501950). The unique properties that di�erentiate pseudorandom generation from true random

generation—determinism and periodicity—can be overcome or even employed gainfully in applied settings,

however. The periodicity of sequences generated via pseudorandom generation can easily be made so large22

that it is of no practical concern (Matsumoto and Nishimura 19981998). The determinism of pseudorandom

generation allows, so long as the initial seed value is known, for a pseudorandom sequence to be recreated

so the computations performed using that particular sequence can be readily repeated. This is particularly

useful in the debugging process (Hull and Dobell 19621962). Further, the use of pesuedorandom generation

frees computer scientists from expensive, specialized hardware required to perform true random number

generation and the physically-limited throughput capacity of true random number generation. It should be

no surprise, therefore, that pseudorandom generation is widely employed today in applications ranging from

financial simulation to biological simulation to digital playlist shu�ing (Schwartz 20082008; Dunbar 20152015).

1.2 The Linear Congruence Method

The Linear Congruence Method (LCM) is a well-studied approach to pseudorandom number generation.

It was developed by Lehmer in 1949. Using a multiplier of 23 and a modulus of 108 + 1, he successfully

generated sequences of more than five million eight decimal digit numbers using an ENIAC computing

machine (Hull and Dobell 19621962). This method has a solid theoretical framework showing that, under certain

special circumstances, the sequence possesses the very similar moments to the uniform distribution over (0,1].

Additionally, by strategically choosing the modulus as a power of two, the calculations required to perform

the linear congruence method can be performed rather e�ciently with binary computing machines. m-tuples

derived from sequences generated using Linear Congruence method have been shown to lie on relatively few

hyperplanes in Rm (Marsaglia 19681968). Thus, because the values of a member of a LCM-generated sequence

are not completely statistically independent of the other values in the sequence, the LCM approach is not

appropriate for applications highly sensitive to the quality of pseudorandom sequences that are provided
2
The Mersenne twister, for example, exhibits a 2

19937 ≠ 1 element long periodic in its output.

2

(such as Monte Carlo methods). Although this approach has been largely superseded by a new generation

of pseudorandom generators such as the Mersenne Twister, it is still not infrequently employed today, and

is of theoretical interest and historical significance.

2 The Linear Congruence Method

2.1 Algorithm

The Linear Congruence Method algorithm is presented as shown in (Hull and Dobell 19621962). Begin by

choosing “magic values” as follows:

• m: modulo; m > 0, m œ Z

• a: multiplier; a > 0, a œ Z

• c: increment; c Ø 0, a œ Z

The particular choice of “magic values” determines important characteristics of the sequence {Xi} that will

be generated using LCG. This will be discussed in greater detail later, but su�ce it to say that a poor choice

of “magic values” may lead to relatively short periodicity in {Xi} while choosing “magic values” that fulfill

certain criteria guarantees a periodicity of exactly m, the modulo value chosen.

Next, a seed value X0 is chosen such that X0 < m and X0 œ Z. The sequence {Xi} is then generated

recursively using the relationship

Xn+1 = (a · Xn + c) mod m (1)

In this way, the sequence {Xi} can be built up term after term as desired; this relationship is typically

employed in applications using the LCM method. However, a closed-form expression can also be used to

determine the nth value of a sequence {Xi} with seed X0

Xn =
1

a

nX0 + (an ≠ 1)c
a ≠ 1

2
mod m (2)

This type of “shortcut” is useful in applications where distinct, finite subsequences of a single pseudorandom

sequence with a certain seed are utilized asynchronously, such as GPU computing(MWC64X - Uniform random number generator for OpenCL.MWC64X - Uniform random number generator for OpenCL.

20152015), as well as in formal mathematical analysis of the properties of the Linear Congruence Method.

3

2.2 Computational Examples

Table 11 provides a first example of a sequence generated by the Linear Congruence Method with m = 5,

a = 3, c = 2, X0 = 1. Note that after only four steps in this sequence, we have returned to a value already

n Xn (Xn · a + c) mod m

0 1 (1 · 3 + 2) mod 5 = 0
1 0 (0 · 3 + 2) mod 5 = 2
2 2 (2 · 3 + 2) mod 5 = 3
3 3 (3 · 3 + 2) mod 5 = 1
4 1

Table 1: An annotated sequence of numbers generated using the linear congruence method with period
p < m.

encountered in the sequence. Because—by definition—the value of each item Xn where n > 0 in the sequence

{Xi} depends only on the value of the item in the sequence that directly precedes it, Xn≠1, the sequence

will exhibit a periodicity with period p = 4. Observe further that p < m and, relatedly, that there does not

exist n such that Xn = 4.

Table 22 provides a second, and final, example of a sequence generated by the Linear Congruence Method

with m = 9, a = 4, c = 2 X0 = 2. After nine steps in this sequence, we have to returned to a value already

n Xn (Xn · a + c) mod m

0 4 (4 · 4 + 2) mod 9 = 0
1 0 (0 · 4 + 2) mod 9 = 2
2 2 (2 · 4 + 2) mod 9 = 1
3 1 (1 · 4 + 2) mod 9 = 6
4 6 (6 · 4 + 2) mod 9 = 8
5 8 (8 · 4 + 2) mod 9 = 7
6 7 (7 · 4 + 2) mod 9 = 3
7 3 (3 · 4 + 2) mod 9 = 5
8 5 (5 · 4 + 2) mod 9 = 4
9 4

Table 2: An annotated sequence of numbers generated using the linear congruence method with period
p = m.

encountered in the sequence. Thus, this sequence will exhibit periodicity with period p = 9. Take special

note that, for this particular set of “magic values” we have p = m and with 0 Æ j, k < m for every k there

exists a unique j such that Xk = j and vice versa.33 As discussed in Section 33, these observations hold true

for any possible choice of seed value X0 and result from fulfillment of particular conditions on the “magic

values” chosen for the Linear Congruence Generator.
3
Equivalently, a one-to-one bijective relation exists between {Xi} where 0 Æ i < p and {n} where 0 Æ i < n.

4

3 Distribution of Random Variables Simulated Using the Linear

Congruence Method

We begin by introducing a theorem from (Hull and Dobell 19621962) in order to facilitate our investigation into

the distribution of sequences {Xi} generated via LCM.

Theorem 3.1 (Linear Congruence Generator Full Period Theorem)

The sequence generated by the recursive relationship shown in Equation 11 has period length p = m if and

only if

1. c is relatively prime to m;

2. for all prime factors f of m, a mod f = 1;

3. if 4 is a factor of m, a mod 4 = 1.

This theorem will allow us to reckon out the kth raw moment of a scaled form of a sequence {Xi} produced

from a Linear Congruence Generator with “magic numbers” that fulfill the conditions of Theorem 3.13.1 and thus

have period length p = m. With {Xi} defined as a sequence generated from a Linear Congruence Generator

with modulo m and “magic numbers” satisfying the stipulations of Theorem 3.13.1, define the sequence {Yi}

such that

Yn = Xn

m

’n (3)

A value Xn in a sequence {Xi} from a Linear Congruence Generator with modulo m is inherently restricted

0 Æ Xn < m so Yn œ [0, 1) ’n. Theorem 3.23.2 gives us limmæŒ E({Yi}k) = 1/(k + 1) if we assume special

conditions on the “magic numbers” governing the LCM generator behind {Yi}. First, though, we develop

Lemmas 3.13.1 and 3.23.2.

Lemma 3.1 (Uniqueness of Values of Sequences Generated Via LCM)

Let p represent the smallest periodicity of a sequence {Xi} from a Linear Congruence Generator. All values

X0}, ...,Xp≠1 are unique.

Proof. Suppose there exists 0 Æ j, k < p such that i ”= j and Xj = Xk. For convenience, we assume without

loss of generality that j < k By the recursive definition 11 of the sequence {Xi}, for elements s and t of the

sequence Xs = Xt implies Xs+1 = Xt+1. Thus, by induction with base case Xj = Xk, for all n > 0 œ Z we

have Xj+n = Xk+n. Rewriting, we have Xj+n = Xj+(k≠j)+n for all n > 0 œ Z. It follows by further inductive

5

analysis that Xj+n = Xj+–(k≠j)+n for any – > 0 œ Z. Take note that with j, k < p we have k ≠ j < p.

The existence of 0 Æ j, k < p such that Xj = Xk therefore implies the existence of periodicity k ≠ j < p in

the sequence Xi. Our initial supposition therefore violates the status of p as the smallest periodicity of a

sequence {Xi}, so it cannot be true.

Lemma 3.2 (Composition of Full Period Sequences Generated Via LCM)

Let p represent the smallest periodicity of a sequence {Xi} from a Linear Congruence Generator with modulo

m. If the sequence {Xi} achieves maximal period-length, that is if p = m, the subsequence {Xi} with i œ Z

and 0 Æ i < p is a re-arrangement of the sequence 0, ..., p ≠ 1.

Proof. We want to show that for every 0 Æ n < p with n œ Z there exists a unique i œ Z with 0 Æ i < p such

that Xi = n. Lemma 3.1 gives us uniqueness; there cannot exist 0 Æ j, k < p such that i ”= j and Xj = Xk.

Existence, however, remains untreated. We will first show q œ {Xi} ∆ q œ {0, ..., p ≠ 1} then verify existence

by showing q œ {0, ..., p ≠ 1} ∆ q œ {Xi}.

• q œ {Xi} ∆ q œ {0, ..., p ≠ 1}

Recall that, by the definition of the modulo operation, a value Xn in a sequence {Xi} from a Linear

Congruence Generator with modulo m is restricted 0 Æ Xn < m. As an assumption, we have p = m

so the restriction on Xn can be written as 0 Æ Xn < p. With Xn œ Z we have q œ {0, ..., p ≠ 1}.

• q œ {0, ..., p ≠ 1} ∆ q œ {Xi}

Suppose there exists q œ {0, ..., p ≠ 1} such that q /œ {Xi}. We have g œ {Xi} ∆ g œ {0, ..., p ≠ 1} so we

would have g œ {Xi} ∆ g œ {{0, ..., p≠1}\{q}}. Thus, we would have {Xi} µ {0, ..., p ≠ 1} \ {q}. Note

that |{Xi}| = |{0, ..., p ≠ 1}| = p. Because q œ {0, ..., p ≠ 1}, |{0, ..., p ≠ 1} \ {q}| = p ≠ 1. Uniqueness

of Xn œ {Xi} together with g œ {Xi} ∆ g œ {{0, ..., p ≠ 1} \ {q}} would force |{Xi}| Æ p ≠ 1. However,

we know |{Xi}| = p. Thus, it must be true that q œ {0, ..., p ≠ 1} ∆ q œ {Xi}.

Theorem 3.2 (Linear Congruence Method Sequence kth Raw Moment)

With {Yi} defined via Equation 33 with a Linear Congruence Generator with “magic numbers” satisfying

Theorem 3.13.1, limmæŒ E({Yi}k) = 1/(k + 1).44

Proof. From a frequentist perspective it makes sense to calculate the kth moment of a random variable

simulated by a sequence {Si} as limaæŒ
qa

n=0
Sk

n
n . If the sequence {Si} has periodicity p, we calculate the

4
Indirectly inspired by (Schruben 20072007).

6

expected value of a random variable simulated a sequence {Si} as

E({Si}) = 1
p

p≠1ÿ

n=0
Sk

n

Note that we can choose an arbitrarily large m and find values of c and a that fulfill Theorem 3.13.1. Consider,

for example, defining m = 3z with z > 1, z µ Z, c as 2, and a as 2. We have limzæŒ m = limzæŒ 3z = Œ

so m is unbounded. With the unbounded nature of m in hand define {Xi} as the sequence generated by

a linear congruence generator with “magic values” satisfying Theorem 3.13.1 such that {Xi} takes on its full

periodicity m. Define sequence {Yi} such that each term Yn = Xn/m.

lim
mæŒ

E({Yi}k) = lim
mæŒ

1
m

m≠1ÿ

n=0
Yk

n = lim
mæŒ

1
m

m≠1ÿ

n=0
(Xn/m)k = 1

m

k+1

m≠1ÿ

n=0
Xk

n

Lemma 3.23.2 gives us that the subsequence {Xi} with i œ Z and 0 Æ i < p is a re-ordering of the sequence

0, ..., p ≠ 1 so we rearrange to find

lim
mæŒ

E({Yi}k) = lim
mæŒ

1
m

k+1

m≠1ÿ

n=0
n

k

At this point, we bring in Faulhaber’s formula to do some heavy lifting

Nÿ

n=1
n

k = 1
k + 1

kÿ

j=0
(≠1)j

3
k + 1

j

4
BjN

k+1≠j

where Bj is the jth Bernoulli number. Rewriting our expression for the kth raw moment of {Yi} with

Faulhaber’s formula yields

lim
mæŒ

E({Yi}k) = lim
mæŒ

1
m

k+1
1

k + 1

kÿ

j=0
(≠1)j

3
k + 1

j

4
Bj(m ≠ 1)k+1≠j + 1

m

k+1

Removing elements that disappear as m æ Œ, our expression cleans up to

lim
mæŒ

E({Yi}k) = lim
mæŒ

1
m

k+1
1

k + 1(≠1)0
3

k + 1
0

4
B0(m ≠ 1)k+1

7

Further evaluation and simplification, including use of the identity B0 = 1, yields

lim
mæŒ

E({Yi}k) = 1
k + 1

Remark that our results from Theorem 3.23.2 give, with {Yi} defined via Equation 33

lim
mæŒ

E({Yi}) = 1/2

and

lim
mæŒ

var({Yi}) = E({Yi}2) ≠ (E({Yi}))2 = 1/3 ≠ (1/2)2 = 1/12

These values match exactly the expected value and the variance of the uniform random distribution U [0, 1).Next,

we will obtain an expression for the kth raw moment of the uniform random distribution U [0, 1) in order to

perform a more rigorous comparison between a random variable simulated via a sequence {Yi} and U [0, 1).

Theorem 3.3 (Uniform Random Distribution Kth Moment)

For U ≥ U [0, 1), E(Uk) = 1/(1 + k).

Proof. Take U ≥ U [0, 1) and let f(x) represent the probability distribution of U. By definition,

E(Uk) =
⁄ Œ

≠Œ
f(x) · x

k
dx

For a uniform random distribution over [0, 1), we have f(x) = 1 for x on [0, 1) and f(x) = 0 otherwise. Thus,

E(Uk) =
⁄ 1

0
x

k
dx = x

k+1

k + 1

1

0
= 1

k + 1

Theorems 3.23.2 and 3.33.3 reveal that the kth moments of a random variable distributed as U [0, 1) and

a random variable simulated via {Y}i (as defined in Equation 33) for large m are both given as 1/(1 + k).

Moment generating functions can be used as a unique identifying feature of a probability distribution (Dunbar

20152015). The identical results of Theorems 3.23.2 and 3.33.3 thus draw strong similarities between the behavior of

distributions of a random variable U [0, 1) and a random variable simulated via {Y}i. Our analysis leads

us to conclude that, for large m and selection of “magic numbers” that satisfy Theorem 3.13.1 the distribution

8

of a random variable simulated using the Linear Generation Method very well resembles the unit uniform

distribution U [0, 1).

4 Independence and Random Variables Simulated Using the Lin-

ear Congruence Method

Linear Congruence Generators su�er from inherent correlations between consecutive elements of the se-

quences they generate, as shown by (Marsaglia 19681968). Thus, sequences generated through the Linear Con-

gruence Method do not truly display independence and should not be used for sensitive applications such

as Monte Carlo methods. However, with the right choice of “magic values,” Linear Congruence generators

can still perform “well enough” to pass many, except the most rigorous, statistical tests for randomness. We

will begin this section by briefly discussing Theorem 4.14.1, a well known result from (Marsaglia 19681968), before

moving along to touch on results from statistical tests for randomness.

Theorem 4.1 (Random Numbers Fall Mainly In the Planes)

If c1, c2, ..., cn is any choice of integers such that

c1 + c2k + c3k

2 + ... + cnk

n≠1 © 0 mod m

then all of the points fi1, fi2, ... will lie i the set of parallel hyperplanes defined by the equations

c1x1 + c2x2 + ... + cnxn = 0, ±1, ±2, ...

There are at most

|c1| + |c2| + ... + |cn|

of these hyperplanes which intersect the unit n-cube, and there is always a choice of c1, c2, ..., cn such that

all of the points fall in fewer than (n!m)1/n hyperplanes.

Theorem 4.14.1 essentially tells us that plots of n-tuples of consecutive values in a LCM derived in a n-

dimensional space are arranged in a highly ordered fashion. Specifically, they are restricted to a bounded

number of distinct hyperplanes. The result of this theorem can readily be appreciated visually. Consider

Figure 1; it is apparent that significant correlation exists between consecutive values (in the form of diagonal

“streaks”) in a sequence generated by the LCG3 generator (a LCM generator with specific “magic values”).

9

Figure 1: A plot of consecutive values show-
ing egregious correlations in a sequence gen-
erated via the Linear Congruence Method
(Burgoine 20132013).

Figure 2: A plot of consecutive values from
a sequence generated using the Linear Con-
gruence Method with little visually appar-
ent correlations (Burgoine 20132013).

In Figure 2, on the other hand, statistical tests confirm that, as we would expect from a cursory visual

inspection, the correlations are not as egregious. Recall that Theorem 4.14.1 gives us the upper bound on the

number of planes containing all n-tuples generated by as (n!m)1/n. This bound decreases as m, the modulo

component of the Linear Congruence Generator, decreases. As we would expect from visual comparison of

Figures 1 and 2, m for the LCG3 generator associated with Figure 1 is much smaller than the m for the

LCGNR generator associated with Figure 2 (Burgoine 20132013).

The question of how to evaluate the statistical performance of a pseudorandom generator is nebulous.

The practical consensus, though, seems to be subjecting it to a battery of tests where each tests a specific

statistical property of a random variable that would be expected to manifest in the series of values generated

by a pseudorandom generator (L’Ecuyer and Simard 20072007). Testing a somewhat slaphazard series of null

hypotheses, does not definitively a�rm the quality of pseudorandom number generator. Instead this approach

of trial by statistical battery simply looks for evidence that a sequence of numbers fails to fulfill a specific

statistical property we desire. Examples of statistical tests that might be considered include comparison of

the empirical distribution of the maximum streak lengths to the theoretical distribution of maximum streak

lengths by a chi-square test or comparison of actual outcomes of a series of random walks (i.e. number

of steps to the right, maximum distance reached, fraction of time spent to the right of the origin, number

of returns to zero, and number of sign changes) to the expected theoretical distributions, also using a chi-

square test (L’Ecuyer and Simard 20072007). In (Burgoine 20132013), Linear Congruence Generators with di�ering

10

“magic values” were subjected to a battery of statistical probes such as Kolmogorov-Smirnov tests and the

Spearman’s Rank Correlation Coe�cient test. The performance of these generators fell on a wide spectrum,

one passing all the tests and others failing di�ering numbers of tests. Although LCG statistical performance

can be enhanced by an appropriate choice of “magic numbers,” it is still vastly outperformed by new, more

sophisticated generators such as the Mersenne Twister (Burgoine 20132013). Thus, more sophisticated generators

should be preferred in settings where the very high statistical quality of pseudorandom sequences is essential.

5 References

ANU Quantum Random Number Server (2015). url: https://qrng.anu.edu.au/https://qrng.anu.edu.au/ (visited on 11/19/2015).

Burgoine, Paul (2013). The Testing of Random Number Generators. url: http://www1.maths.leeds.ac.uk/~voss/projects/2012-RNG/Burgoine.pdfhttp://www1.maths.leeds.ac.uk/~voss/projects/2012-RNG/Burgoine.pdf

(visited on 12/01/2015).

Cole, Eric (2011). Network Security Bible. en. John Wiley & Sons. isbn: 9780470570005.

Dunbar, Steven (2015). Stochastic Processes and Advanced Mathematical Finance: Moment Generating Func-

tions. url: https://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/LimitTheoremsCoinTossing/MomentGeneratingFunctions/momentgeneratingfunctions.pdfhttps://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/LimitTheoremsCoinTossing/MomentGeneratingFunctions/momentgeneratingfunctions.pdf

(visited on 12/01/2015).

Hull, Thomas E. and Alan R. Dobell (1962). “Random number generators”. In: SIAM review 4.3, pp. 230–

254. url: http://epubs.siam.org/doi/pdf/10.1137/1004061http://epubs.siam.org/doi/pdf/10.1137/1004061 (visited on 12/01/2015).

L’Ecuyer, Pierre and Richard Simard (2007). “TestU01: AC library for empirical testing of random number

generators”. In: ACM Transactions on Mathematical Software (TOMS) 33.4, p. 22. url: http://dl.acm.org/citation.cfm?id=1268777http://dl.acm.org/citation.cfm?id=1268777

(visited on 11/19/2015).

Marsaglia, George (1968). “Random numbers fall mainly in the planes”. In: Proceedings of the National

Academy of Sciences of the United States of America 61.1, p. 25. url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC285899/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC285899/

(visited on 12/01/2015).

Matsumoto, Makoto and Takuji Nishimura (1998). “Mersenne twister: a 623-dimensionally equidistributed

uniform pseudo-random number generator”. In: ACM transactions on modeling and computer simula-

tion : a publication of the Association for Computing Machinery. 8.1, pp. 3–30. issn: 1049-3301. doi:

10.1145/272991.27299510.1145/272991.272995.

MWC64X - Uniform random number generator for OpenCL. (2015). url: http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.htmlhttp://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html

(visited on 12/01/2015).

11

Neumann, Von J. (1950). “Various Techniques Used in Connection with Random Digits, Collected Works”.

In: National Bureau of Standards, Applied Math Series 12, pp. 36–38.

Noll, Landon Curt, Robert G. Mende, and Sanjeev Sisodiya (1998). “Method for seeding a pseudo-random

number generator with a cryptographic hash of a digitization of a chaotic system”. US5732138 A. U.S.

Classification 380/28, 708/254, 380/46; International Classification H04L9/00, H04L9/22, G06F7/58;

Cooperative Classification H04L9/0662, H04L9/001, G06F7/582, H04L9/0869; European Classification

H04L9/00C, G06F7/58P, H04L9/22. url: http://www.google.com/patents/US5732138http://www.google.com/patents/US5732138 (visited on 11/19/2015).

Rand Corporation (2001). A Million Random Digits with 100,000 Normal Deviates. English. Santa Monica,

CA: American Book Publishers. isbn: 9780833030474.

Schruben, Lee (2007). IEOR 261 Experimenting with Simulated Systems Lecture Notes.

Schwartz, Russel (2008). Biological Modeling and Simulation: A Survey of Practical Models, Algorithms, and

Numerical Methods. English. 1 edition. Cambridge, Mass: The MIT Press. isbn: 9780262195843.

12

