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Introduction



Motivation

Figure 1: Ant
traffic
[Alexander Wild, a]

Figure 2:
Human traffic
[Patrick T. Fallon, 2015]



Figure 3: Kilobots,
a common swarm
robotics platform
[SSR Lab, Harvard, ]

Figure 4: Kilobots
in action
[Mike Rubenstein, 2014]




Background

Figure 5: Video clip of pheromone deposit and response by foraging ants



Background

Figure 6: Video clip demonstrating route selection by foraging ants



Figure 7:
Tetramorium
caespitum
[Alexander Wild, c]

The collective foraging behavior of ants is well studied, including

e the strategies ants use to engage in foraging behavior [Camazine, 2003]
e how ants tend to select the shortest path to food [Camazine, 2003]
e how ants tend to select the richest food source [Camazine, 2003

e approaches to mathematical modeling of ant foraging
[Perna et al., 2012, Ryan, 2016]



Resea Question

e How does terrain affect the foraging path chosen by ants?

U

e To travel between nest to food, do ants tend to select

e the shortest path,

e the quickest path,

e some compromise between these, or
e some other path all together?

e How might individual ant behaviors on uneven terrain contribute to
collective decision making?



Approach



Experimental Design
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Experimental Design
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Figure 9: Nest and food placement scheme



Modeling Objectives

The model should consider:

self-propulsion,

e containment in arena,

e forager/returner roles (attraction to food, attraction to nest),
e random reorientation events (“Boltzmann walker”),

e physical effects of gravity on inclined terrain,

e behavioral phenomena on inclined terrain,

e pheromone deposit, and

e pheromone response behavior.



System of Ordinary Differential Equations: Single Ant

d (X
v

dt

self-propulsion on uneven terrain:

e gravity opposes uphill
movement, aids downhill
movement

e sever incline/decline decreases
overall efficiency of ant
movement

e ants choose walking speed to
expend constant power
[Holt and Askew, 2012]
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Figure 10: Ant velocity under
constant power on inclined terrain 10



e certain conditions trigger instantaneous changes in
example: bouncing ball

state variables

height

= ——

Figure 11: Matlab ballode example
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uses:

e “bouncing” ants off the arena walls
e switching between forager and returner roles

e random reorientation events
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random reorientation events (“Boltzmann walker”) [Khuong et al., 2013]:

4' .
..-=-" Figure 12: “Boltzmann walker’
* /’ - cartoon; blue stars denote random
U reorientation events.

e upon reaching a threshold distance (s > Sihresh), the ant experiences
a “reorientation event”

e the threshold distance is generated from an exponential distribution

e the angle the ant turns through is normally distributed
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random reorientation events: adjustments

e free path of ant (Sinresh) increases if ant oriented with the gradient
[Khuong et al., 2013]
e severity of random reorientation should decrease with

e pheromone detection (“following trail”)
e returner status
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behavioral effect of incline:

e ants preferentially re-orient themselves to align with or against a
surface’s topographical gradient [Khuong et al., 2013]

e ants follow longer free paths when aligned with or against a surface's
topographical gradient [Khuong et al., 2013]
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System of Ordinary Differential Equations: Single Ant

effect of pheromone:

e ant accelerates d X _ ..
perpendicular to its dt \v vi(L—R)
orientation

e magnitude of acceleration is
proportional to the
difference in concentration
of pheromone over the “L”
and “R" regions

Figure 14: Regions of ant
sensitivity to pheromone
[Perna et al., 2012]
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Complete System

putting it all together:
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events:

e out of bounds — reflect heading to “bounce” ant
[5-¥]
v

® S > Sihresh — S =0, Sthresh = X + 3 , random reorientation

event with gradient alignment bias

e close to food/nest — switch forager/returner role
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Figure 15: Animation of numerically-approximated solution
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Results




Results (preliminary): Path Shape
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Figure 16: Comparison of overall average nest to food foraging path for, left
to right, —7/3, 0, and 7/3 radian inclines.
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Results (preliminary): Path Length
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Figure 17: Comparison of path lengths over incline angles for corner-to-corner
trials
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Results (preliminary): Trip Duration

Figure 18:
trials
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Results (preliminary): Summ

e as expected, foraging trips take longer over steeper incline and
decline

e also taking longer over uphill versus downhill inclines

e the foraging path is generally more stable with steep incline or
decline

e ants are less likely to get lost/stuck
e this effect is less pronounced in the center-to-center arena

e the foraging path becomes more direct with steeper incline or decline

e even though the direct path is not aligned with the incline in the
corner-to-corner arena
e this effect is less pronounced in the center-to-center arena
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Next Steps

e Refine model
e variable pheromone
deposition rate
e Perform further sensitivity
analyses
e pheromone grid granularity
e pheromone sensitivity radius
of ant
e behavioral weighting

e Perform replicate simulations

e Compare model results with

rical | Figure 19: Tetramorium
empirical results caespitum [Alexander Wild, b]
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Questions?
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