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Introduction



Motivation

Figure 1: Ant
tra�c
[Alexander Wild, a]

Figure 2:
Human tra�c
[Patrick T. Fallon, 2015]
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Motivation

Figure 3: Kilobots,
a common swarm
robotics platform
[SSR Lab, Harvard, ]

Figure 4: Kilobots
in action
[Mike Rubenstein, 2014]
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Background

Figure 5: Video clip of pheromone deposit and response by foraging ants
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Background

Figure 6: Video clip demonstrating route selection by foraging ants
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Background

Figure 7:
Tetramorium

caespitum

[Alexander Wild, c]

The collective foraging behavior of ants is well studied, including

• the strategies ants use to engage in foraging behavior [Camazine, 2003]

• how ants tend to select the shortest path to food [Camazine, 2003]

• how ants tend to select the richest food source [Camazine, 2003]

• approaches to mathematical modeling of ant foraging

[Perna et al., 2012, Ryan, 2016]
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Research Question

• How does terrain a↵ect the foraging path chosen by ants?

+
• To travel between nest to food, do ants tend to select

• the shortest path,

• the quickest path,

• some compromise between these, or

• some other path all together?

• How might individual ant behaviors on uneven terrain contribute to

collective decision making?
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Approach



Experimental Design

Figure 8: Arena terrain scheme
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Experimental Design

Figure 9: Nest and food placement scheme
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Modeling Objectives

The model should consider:

• self-propulsion,

• containment in arena,

• forager/returner roles (attraction to food, attraction to nest),

• random reorientation events (“Boltzmann walker”),

• physical e↵ects of gravity on inclined terrain,

• behavioral phenomena on inclined terrain,

• pheromone deposit, and

• pheromone response behavior.
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System of Ordinary Di↵erential Equations: Single Ant
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self-propulsion on uneven terrain:

• gravity opposes uphill

movement, aids downhill

movement

• sever incline/decline decreases

overall e�ciency of ant

movement

• ants choose walking speed to

expend constant power

[Holt and Askew, 2012]

Figure 10: Ant velocity under

constant power on inclined terrain 10



Events

• certain conditions trigger instantaneous changes in state variables

• example: bouncing ball

Figure 11: Matlab ballode example
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Events

uses:

• “bouncing” ants o↵ the arena walls

• switching between forager and returner roles

• random reorientation events
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Events
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random reorientation events (“Boltzmann walker”) [Khuong et al., 2013]:

Figure 12: “Boltzmann walker”

cartoon; blue stars denote random

reorientation events.

• upon reaching a threshold distance (s > sthresh), the ant experiences

a “reorientation event”

• the threshold distance is generated from an exponential distribution

• the angle the ant turns through is normally distributed
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Events

Te↵ective = T/�

� =
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random reorientation events: adjustments

• free path of ant (sthresh) increases if ant oriented with the gradient

[Khuong et al., 2013]

• severity of random reorientation should decrease with

• pheromone detection (“following trail”)

• returner status
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Events

behavioral e↵ect of incline:

• ants preferentially re-orient themselves to align with or against a

surface’s topographical gradient [Khuong et al., 2013]

• ants follow longer free paths when aligned with or against a surface’s

topographical gradient [Khuong et al., 2013]

Figure 13: Ant Reorientation on Inclined Surfaces [Khuong et al., 2013]
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System of Ordinary Di↵erential Equations: Single Ant

e↵ect of pheromone:

• ant accelerates

perpendicular to its

orientation

• magnitude of acceleration is

proportional to the

di↵erence in concentration

of pheromone over the “L”

and “R” regions

d

dt

 
~x

~v

!
=

 
. . .

~̂v?(L� R)

!

Figure 14: Regions of ant
sensitivity to pheromone
[Perna et al., 2012]
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Complete System

putting it all together:

d
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events:

• out of bounds ! reflect heading to “bounce” ant

• s > sthresh ! s = 0, sthresh = X + c3
|~s·~v |
k~vk , random reorientation

event with gradient alignment bias

• close to food/nest ! switch forager/returner role
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Animation

Figure 15: Animation of numerically-approximated solution
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Results



Results (preliminary): Path Shape

Figure 16: Comparison of overall average nest to food foraging path for, left

to right, �⇡/3, 0, and ⇡/3 radian inclines.
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Results (preliminary): Path Length

Figure 17: Comparison of path lengths over incline angles for corner-to-corner

trials
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Results (preliminary): Trip Duration

Figure 18: Comparison of trip durations over incline angles for corner-to-corner

trials
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Results (preliminary): Summary

• as expected, foraging trips take longer over steeper incline and
decline

• also taking longer over uphill versus downhill inclines

• the foraging path is generally more stable with steep incline or
decline

• ants are less likely to get lost/stuck

• this e↵ect is less pronounced in the center-to-center arena

• the foraging path becomes more direct with steeper incline or decline

• even though the direct path is not aligned with the incline in the

corner-to-corner arena

• this e↵ect is less pronounced in the center-to-center arena
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Next Steps

• Refine model

• variable pheromone

deposition rate

• Perform further sensitivity
analyses

• pheromone grid granularity

• pheromone sensitivity radius

of ant

• behavioral weighting

• Perform replicate simulations

• Compare model results with

empirical results
Figure 19: Tetramorium

caespitum [Alexander Wild, b]
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Questions?
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