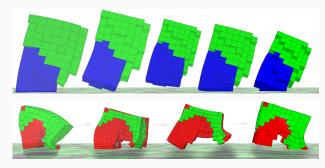

Investigating Evolvability in a Genetic Regulatory Network Model

Mathematics and Computer Science Department Seminar

Matthew Moreno
mamoreno@pugetsound.edu
April 10th, 2017

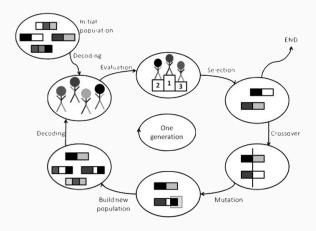
Evolutionary Algorithm

Search


"Face it, Fred-you're lost!"

- common scenario: you can recognize a good solution, but you don't know how to find one
- encountered by computer scientists (and everyone else, too)
- common approach: try different options, evaluate outcomes to help choose next options to try
- this is called search

1


Evolutionary Algorithm: Vocabulary

- · individual
- population
- fitness
- genotype
- phenotype
- mutation

Figure 1: Illustrative examples of candidate solutions in an evolutionary algorithm [Cheney et al., 2013, Figures 1, 12].

Evolutionary Algorithm: Overview

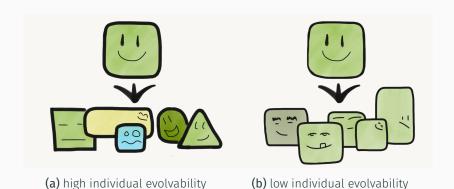
Figure 2: A schematic illustration of the evolutionary algorithm [Prothmann et al., 2009, Figure 1].

Evolutionary Algorithm: Example

Figure 3: Evolution in Action [Cheney et al., 2013]

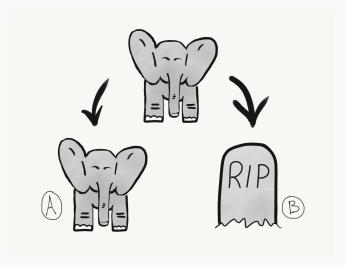
Evolutionary Algorithm: Problem Statement

What makes an evolutionary algorithm work?

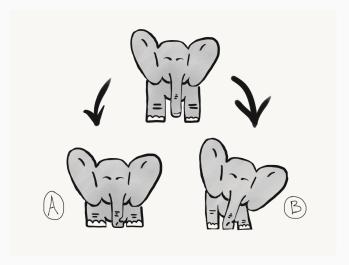

Defining Evolvability

Defining Evolvability

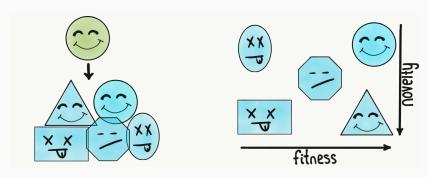
consensus: the amount of useful variation generated by the evolutionary process


- · evolvability as the amount of novel variation generated
- evolvability the proportion of variation that is useful

Evolvability as Novel Variation


Figure 4: An illustration of individual evolvability, considering evolvability as heritable variation [Wilder and Stanley, 2015].

Evolvability as Bias towards Useful Variation


Figure 5: Illustration of robustness; high evolvability left and low evolvability right [Downing, 2015].

Evolvability as Bias towards Useful Variation

Figure 6: Illustration of developmental constraint; high evolvability left and low evolvability right [Smith et al., 1985, Tuinstra et al., 1990].

Generating and Reading an Evolvability Signature

Figure 7: Cartoon illustration describing the creation and layout of an evolvability signature diagram [Tarapore and Mouret, 2015].

Causes of Evolvability: Intuition

Summary

big idea: internal system configuration determines the outcomes of change to the system

Computer Science Intuition: Spaghetti Code

idea: software without compartmentalization, error handling, with hard-coded constants, etc. is much more difficult to alter in useful ways

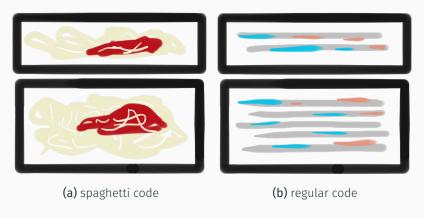
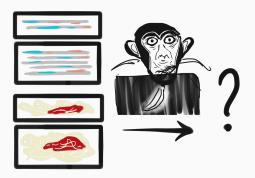



Figure 8: A cartoon comparison of spaghetti and regular code.

Computer Science Intuition: Spaghetti Code

idea: software without compartmentalization, error handling, with hard-coded constants, etc. is much more difficult to alter in useful ways

Figure 9: Spaghetti code and proper code might experience different distributions of outcomes from arbitrary changes to the software made by a junior developer from the local primate house.

Biological Perspective: Intraindividual Degeneracy

idea: employing a diverse collection of substructures that provide identical or near-identical functionality promote robustness through redundancy while providing many jumping off points for variation through repurposing or elaboration

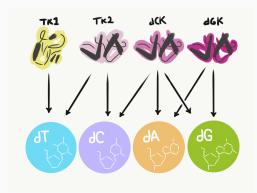
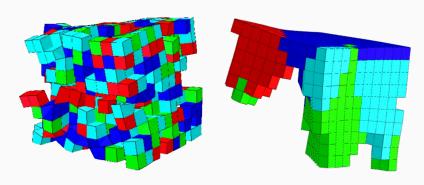



Figure 10: Mammalian deoxyribonucleoside kinases exhibit degeneracy [Sandrini and Piskur, 2005].

Evolvability in Action

Promoting Evolvability: Indirect Encoding

(a) direct encoding (low regularity) (b) indirect encoding (high regularity)

Figure 11: Representative examples of soft robots evolved with direct and indirect representations [Cheney et al., 2013, Figures 6, 7]

Plasticity

Environmental Influence on the Phenotype

- in biology, genotype not sole determinant of phenotype
- $\cdot P = G + E$
- · plasticity: phenotypic response to the environment
- direct plasticity versus indirect plasticity

Direct Plasticity: Biological Intuition

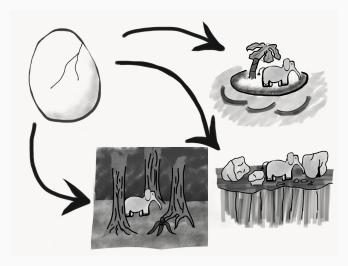
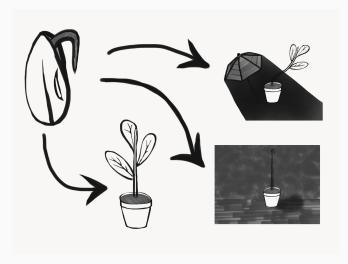



Figure 12: A cartoon illustration of resistance to environmental perturbation.

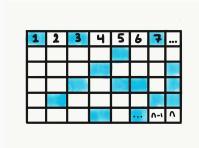

Indirect Plasticity: Biological Intuition

Figure 13: A cartoon illustration of alternate phenotypes expressed based on environmental signals.

Genetic Regulatory Network Model

Model Framework

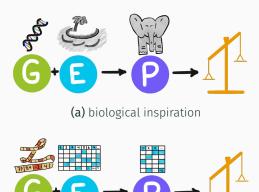
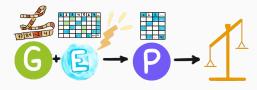


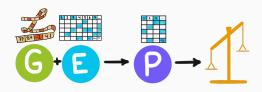
Figure 14: Chemical concentrations are represented as a list of boolean values

Figure 15: The GRN genotype is a set of if-then rules that acts on a set of chemical concentrations. The model employed was inspired by [Wilder and Stanley, 2015].

Model Framework

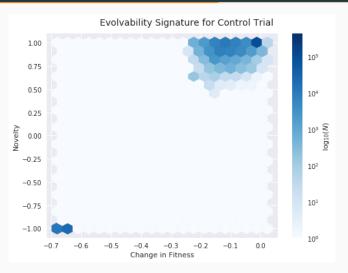


(b) genetic regulatory network model


Figure 16: A comparison of the genetic regulatory network model and its biological inspiration.

Experiment: Direct Plasticity

Direct Plasticity: Initial State Perturbation


(a) experimental scheme

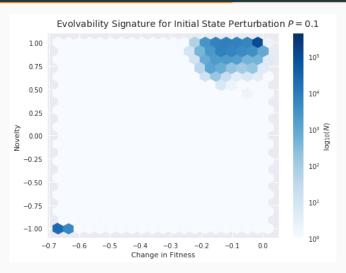
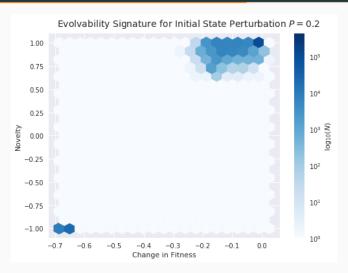
(b) control scheme

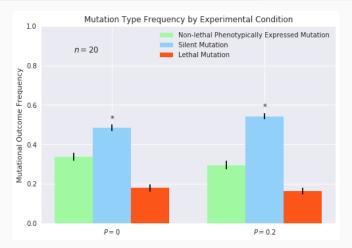
Figure 17: A comparison of the control and experimental schemes employed to investigate the relationship between direct plasticity and evolvability.

Evolvability Signature P = 0

Figure 18: Evolvability signature of champion evolved with no initial plasticity. Figure after [Tarapore and Mouret, 2015].

Evolvability Signature P = 0.1


Figure 19: Evolvability signature of champion evolved with medium initial plasticity, P = 0.1. Figure after [Tarapore and Mouret, 2015].

Evolvability Signature P = 0.2

Figure 20: Evolvability signature of champion evolved with greater initial plasticity, P = 0.2. Figure after [Tarapore and Mouret, 2015].

Mutational Outcome Frequencies

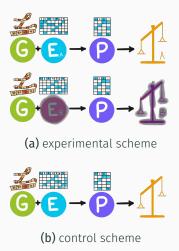
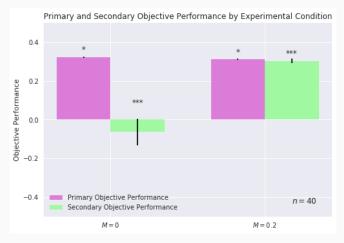
Figure 21: Comparison of mutational outcome frequencies for champions evolved with and without initial state perturbation.

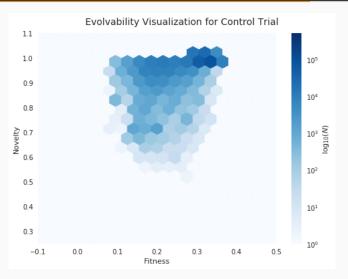
Direct Plasticity Results: Summary

- · direct plasticity increases robustness to mutation
- as in [Reisinger et al., 2005], repeated evaluations (n = 10) were required to observe impact of direct plasticity
- · direct plasticity does not seem to promote canalization

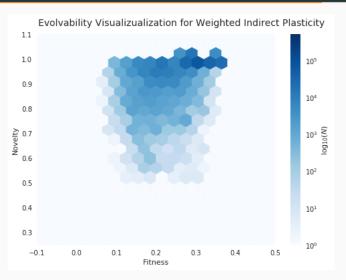
Experiment: Indirect Plasticity

Indirect Plasticity: Conditional Initial State


Figure 22: A comparison of the control and experimental schemes employed to investigate the relationship between indirect plasticity and evolvability.

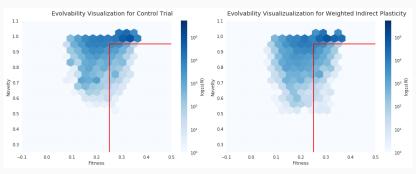
Evidence for Indirect Plasticity


Figure 23: Comparison of objective performances of champions evolved with only primary condition/objective pair versus with both primary and secondary condition/objective pairs.

Evolvability Visualization W = 0

Figure 24: Evolvability visualization of champions evolved with only a primary condition/objective pair.

Evolvability Visualization W = 0.2


Figure 25: Evolvability visualization of champions evolved with primary and secondary condition/objective pairs.

Mutational Outcome Frequencies

Figure 26: Comparison of mutational outcome frequencies for champions evolved with only primary condition/objective pair versus with both primary and secondary condition/objective pairs.

Frequency of Useful Novelty

(a) evolved with only primary condition/objective pair

(b) evolved with both primary and secondary condition/objective pairs

Figure 27: Comparison of evolvability visualizations with region corresponding to useful novelty highlighted.

Indirect Plasticity Results: Summary

- · indirect plasticity observed
- indirect plasticity increases sensitivity to mutation
- indirect plasticity may promote useful novelty

Closing Thoughts

Next Steps

- investigate structural changes in gene regulatory networks induced by plasticity
- investigate interaction of direct and indirect plasticity
- attempt to demonstrate situation where search with plasticity outperforms search without

Closing Thoughts: Practical Applications

Figure 28: A spacecraft antenna design generated using evolutionary methods [Hornby et al., 2006, Figure 2(a)].

Closign Thoughts: Scientific Questions

- at what level of abstraction can the power of biological evolution be harnessed in a computational model?
- what are the fundamental mechanisms at play in evolution?

Closing Thoughts: Scientific Questions

- evolutionary biology provides continuing inspiration for new techniques in evolutionary computing
- evolutionary models move theory evaluation from a qualitative endeavor towards a quantitative endeavor

Acknowledgements

- DEAP [Fortin et al., 2012]
- Professor Richards for leading CS capstone
- Professor Chiu and Chili Johnson for lending me compute time
- Professor Smith for serving as a thesis reader
- Professor Chambers for serving as my thesis advisor

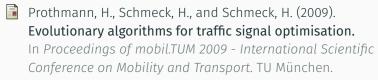
References I

Downing, K. L. (2015).
Intelligence emerging: adaptivity and search in evolving neural systems.

MIT Press, Palatino.

Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M., and Gagné, C. (2012).

DEAP: Evolutionary Algorithms Made Easy. *Journal of Machine Learning Research*, 13:2171–2175.


Ha, D. (2015).

Neurogram.

References II

- Hornby, G. S., Globus, A., Linden, D. S., and Lohn, J. D. (2006). Automated Antenna Design with Evolutionary Algorithms. *AIAA Space*, pages 19–21.
- Mengistu, H., Lehman, J., and Clune, J. (2016). Evolvability Search: Directly Selecting for Evolvability in order to Study and Produce It. GECCO Proceedings.
- Nguyen, A., Yosinski, J., and Clune, J. (2015).
 Innovation Engines: Automated Creativity and Improved
 Stochastic Optimization via Deep Learning.
 In Proceedings of the Genetic and Evolutionary Computation
 Conference, Madrid.

References III

Reisinger, J., Stanley, K. O., and Miikkulainen, R. (2005). Towards an Empirical Measure of Evolvability. *GECCO'05 Proceedings*.

Sandrini, M. P. B. and Piskur, J. (2005). Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction.

Trends in biochemical sciences, 30(5):225–8.

References IV

Smith, J. M., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L. (1985).

Developmental Constraints and Evolution: A Perspective from the Mountain Lake Conference on Development and Evolution The Quarterly Review of Biology.

The Quarterly Review of Biology, 60(3):265–287.

Tarapore, D. and Mouret, J. B. (2015).

Evolvability signatures of generative encodings: Beyond standard performance benchmarks.

Information Sciences.

References V

Tuinstra, E., De Jong, G., and Scharloo, W. (1990).

Lack of response to family selection for direction asymmetry in Drosophila melanogaster: left and right are not distinguished during development.

Proc. R. Soc. Lond. B, 241(1301):146-152.

Wilder, B. and Stanley, K. (2015).

Reconciling explanations for the evolution of evolvability.

Adaptive Behavior, 23(3):171-179.